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Fig. 1. Two link robot arm illustrating how the Cartesian coordinates (y1, y2) of the end effector is mapped to the given angles (α1, α2).

I. TRACKING A ROBOT ARM

This article presents a simple example illustrating the power of the fixed-interval Cubature Kalman

Smoother (CKS) over the Cubature Kalman Filter (CKF). Consider the kinematics of a two-link robot

arm (see Fig. 1). Given the angles (α1, α2), the end effector position of the robot arm can be described

in the Cartesian coordinate as follows:

y1 = r1 cos(α1)− r2 cos(α1 + α2)

y2 = r1 sin(α1)− r2 sin(α1 + α2),

where r1 = 0.8 and r2 = 0.2 are the lengths of the two links; α1 ∈ [0.3, 1.2] and α2 ∈ [π/2, 3π/2] are

the joint angles confined to a specific region. The solid and dashed lines in Fig. 1 show the ‘elbow up’

and ‘elbow down’ situations, respectively. The mapping from (α1, α2) to (y1, y2) is called the forward

kinematic, whereas the inverse kinematic refers to the mapping from (y1, y2) to (α1, α2). The inverse

kinematic is not a one-to-one mapping and thus its solution is not unique.

Let the state vector x be x = [α1 α2]
T and the measurement vector y be y = [y1 y2]

T . The state-space

model of the the given inverse kinematic problem can now be written as:

xk+1 = xk + wk

yk =


 cos(α1,k) − cos(α1,k + α2,k)

sin(α1,k) − sin(α1,k + α2,k)





 r1

r2


 + vk
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(a) Cubature Kalman Filter (CKF)
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(b) Cubature Kalman Smoother (CKS)

Fig. 2. Tracking results (True trajectory- Solid line, Estimated Trajectory- Dotted line)
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(a) Cubature Kalman Filter (CKF)
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(b) Cubature Kalman Smoother (CKS)

Fig. 3. Ensemble averaged (over 50 runs) root mean-squared error (RMSE) results (true rmse- red line, estimated rmse- blue)

We assume the state equation to follow a random-walk model perturbed by white Gaussian noise w ∼
N (0, diag[0.01, 0.1]). The measurement equation is nonlinear with measurement noise v ∈ N (0, 0.005I),

where I is the identity matrix of appropriate dimension.

As can be seen from Fig. 2, α1 is a slowly increasing process with periodic random walk whereas α2 is

a periodic, fast, and linearly-increasing/decreasing process. From Figs. 3(a) and 3(b), we see that the root

mean square error of the CKS is less than that of the CKF as expected. Moreover, the CKS is more consis-

tent than the CKF because the smoother estimated root mean square error is higher than the true root mean

square error (Please find more about nonlinear Bayesian filtering at http://grads.ece.mcmaster.ca/ aienkaran/).


