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Multiple Window Time-Frequency Distribution
and Coherence of EEG Using Slepian

Sequences and Hermite Functions
Yan Xu, Simon Haykin,*Fellow, IEEE, and Ronald J. Racine

Abstract— Multiple window (MW) time-frequency analysis
(TFA) is a newly developed technique to estimate a time-varying
spectrum for random nonstationary signals with low bias and
variance. In this paper, we describe the application of MW-TFA
techniques to electroencephalogram (EEG) and compare the
results with those of the conventional spectrogram. We find that
the MW-TFA provide us with not only low bias and variance
time-frequency (TF) distribution for EEG but also TF coherence
estimation between a single realization of EEG recorded from
two sites. We also compare the performance of the MW-TFA
using two sets of windows, Slepian sequences, and Hermite
functions. If care is taken in matching the two windows, we find
no noticeable difference in the resulting TF representations.

Index Terms—Electroencephalogram (EEG), Hermite func-
tions, multiple window (MW), Slepian sequences, spectrogram,
time-frequency analysis (TFA).

I. INTRODUCTION

ELECTROENCEPHALOGRAM (EEG) is the summed
electrical activity of very large numbers of neurons [1].

It can be recorded from scalp electrodes in human subjects or
from electrodes implanted in specific brain regions of experi-
mental animals. EEG recordings have been used extensively to
monitor neuronal activation patterns and the flow of neuronal
signals between brain sites [2]–[4].

The EEG is a nonstationary signal [5]. The time-frequency
(TF) structure of EEG signal is usually represented by conven-
tional TF methods such as the spectrogram wavelet transform
(WT) [6], the Wigner–Ville distribution (WVD), or the reduced
interference distribution (RID) [7]. These conventional meth-
ods are designed for deterministic signals. The EEG, however,
is never fully deterministic. Hence, it is usually treated as
a random or stochastic process. Research in TFA, to date,
has been focused on deterministic signals. Only recently has
attention turned to nonstationary random processes [8]–[10].
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To design a TF distribution estimator for a random process,
we must consider the bias/variance dilemma. Recently sev-
eral researchers have extended Thomson’s multiple-window
method (MWM) to random nonstationary signals to construct
a low bias and variance time-varying spectral estimator [9],
[10].

In this paper, we apply the multiple-window (MW) time-
frequency analysis (TFA) to EEG signals recorded from the
entorhinal cortex and hippocampus of the rat. The hippocam-
pus is a brain structure involved in spatial memory and the
integration of sensory information. Much of the information
the hippocampus receives from cortical areas, including the
olfactory cortex, is funneled through the entorhinal cortex. The
objective in this research is to determine the frequencies for
optimal signal transmission from the olfactory cortex to the
hippocampus via the entorhinal cortex.

In this paper, we do the following.

• Describe the application of the MW-TFA to EEG signals.
• Describe the construction of a MW TF coherence function

to study the temporal relationship between EEG signals
in different regions of the brain.

• Compare the performance of the MW-TFA using two sets
of windows, Slepian sequences, and Hermite functions.

• Finally, we report on the results of these investigations.

This paper is organized as follows. Section II gives a brief
review of Thomson’s MWM for stationary signals. Section III
introduces MW-TFA. In Section IV we apply the MW-TFA
to EEG signals and present the results. Some of these results
have been described briefly elsewhere [4].

II. THOMSON’S MWM

The periodogram is the classical spectral estimator for
stationary signals. While it is unbiased, it suffers from high
variance. Variance may be reduced by segmenting the signal,
computing a periodogram of each segment, and then averaging
the individual periodograms. This procedure, however, in-
creases the bias of the spectral estimate. When we have enough
data, we may obtain the spectral estimate with satisfactory bias
and variance. However, when the data are limited, a tradeoff
between bias and variance is inevitable.

For short, time-limited signals, Thomson suggested using a
different set of windows to compute several periodograms of
theentire signaland then averaging the resulting periodograms
to construct a spectral estimate [11]. To get an estimate with
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Fig. 1. The first four Slepian sequences and their Fourier transforms for the
caseN = 512 andNW = 4: (a) the first four individual sequences and (b)
complex amplitude square of the Fourier transform of the Slepian sequences in
(a). zero-order: solid line; first order: dashed line; second order: dash-dotted
line; third-order: dotted line.

low bias and low variance, the windows must be orthogonal (to
minimize variance) and optimally concentrated in frequency
(to minimize bias). The optimal windows satisfying these re-
quirements for signals with finite length are Slepian sequences
or discrete prolate spheroidal sequences.

A. Slepian Sequences

The Slepian sequences are the eigenvectors of the Toeplitz
eigenvalue equation [12]

(1)

where is the length of the eigenvectors (or data), and
is a half-bandwidth that defines a small local frequency band
centered around frequency: . Equation (1) is
derived from the operation of a time-limitation followed by
band-limitation of the signal [12]. Consequently, the Slepian
sequences are the orthogonal time-limited functions most
concentrated in the frequency band .

Slepian sequences are ordered by their eigenvalues. The
eigenvalue, , gives the fraction of energy within the band

. The first eigenvalues are very close to
1, indicating that the spectra of these lower-order Slepian
sequences have a large energy concentration within the local
frequency band . Fig. 1 shows an example of Slepian
sequences and their Fourier transform.

B. Brief Description of MWM

The procedure to compute the spectral estimate of ,
using Thomson’s MWM is as follows:

1) Specify and , where is the number of data points,
and depends on the desired time-bandwidth (or
frequency resolution).

2) Use (1) to compute the ’s and ’s; actually the
first terms with the largest eigenvalues are
needed.1

1Thomson suggested the use ofK = 2NW � 1 to K = 2NW � 3 to
minimize higher-order window leakage.

3) Apply to the entire length- data and take the
discrete Fourier transform

(2)

where is called the th eigencoefficient and
the th eigenspectrum.

4) Average the eigenspectra so obtained to get an
estimate of the spectrum

(3)

Since the first few eigenvalues are very close to one, (3)
can be simplified to

(4)

C. Coherence

Coherence is a measure of the consistency of phase-
relationship between two time series [13]. It provides a
frequency-specific measure of the phase coupling between
two signals and has been applied to the EEG in a number of
clinical and experimental contexts [3], [14].

Coherence can be obtained fromone realizationof the
multichannel data using Thomson’s MWM. Given two time
series and , ( , their eigen-
coefficients and can be obtained using (2). The
estimated coherence is [11]

(5)

where is the number of windows used and the
asterisk denotes complex conjugation.

III. M ULTIPLE WINDOW ESTIMATE

OF TIME-FREQUENCY DISTRIBUTION

Thomson’s MWM has been extended to TFA [9], [10]. The
MW-TFA is applied to the signal in a similar manner as the
spectrogram. However, instead of applying a single sliding
window along the signal, the MW-TFA applies a set of sliding
windows and then takes the average

(6)

where

(7)

is the signal to be analyzed.
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Fig. 2. The first four Hermite functions and their Fourier transforms: (a)
first four Hermite functions and (b) complex amplitude square of the Fourier
transform of the Hermite functions in (a). Zero-order: solid line; first order:
dashed line; second order: dash-dotted line; third order: dotted line.

The MWTF coherence is defined by

(8)

Two sets of windows have been used in MW-TFA [9], [10].
One of them is the Slepian sequences described previously
and the other is the Hermite functions. We will give a brief
overview of Hermite functions before we apply MW-TFA to
EEG data and then evaluate these two windowing techniques.

A. Hermite Functions

Hermite functions are the eigenfunctions of a localization
operator over the region [15]

(9)

The th-order Hermite function is defined by

(10)

Correspondingly, the eigenvalues of the localization operator
over the region (9) are given by

(11)

An important property of the Hermite functions is that they are
optimally concentrated in the circular TF region defined in (9).
In a manner similar to Slepian sequences, the eigenvalues
of the Hermite functions give the fraction of energy within
this region. As the th eigenvalue approaches one, better
concentration of theth order Hermite function occurs. Hence,
for a given , there are only a few Hermite functions with
good concentration that fall in the region of (9). The first four
Hermite functions and their Fourier transforms are shown on
Fig. 2.

Fig. 3. Sum of the Slepian sequences (solid) and Hermite functions (dashed)
in Figs. 1 and 2 in time and frequency domain: (a) sum of the magnitude
square and (b) sum of the complex magnitude square of their Fourier
transforms. Note the broader bandwidth and higher leakage of Hermite
windows.

IV. THE MW-TFA OF EEG

EEG signals from a previous experiment [4] were used.
Thirty seconds of EEG data were recorded simultaneously
from the entorhinal cortex and hippocampus of the rat. During
the recording, low-intensity trains of electrical pulses were
applied to the olfactory cortex. Two type of trains were
delivered: 1) trains of pulses ramped from 1–40 Hz applied in
the middle 27 s and 2) trains of pulses at frequencies between
1–35 Hz applied in the middle third of the 30-s EEG. In the
latter method, the stimulation frequencies remained constant
throughout each train.

Time-Frequency Analysis:Both the spectrogram and MW-
TFA were used in the analysis. The TF distribution was
obtained by sliding 2.0-s window(s) with a 1.9-s overlap
between consecutive computations. The Hanning window was
used for the spectrogram.

Window Matching: The shapes of the Slepian sequences
and Hermite functions are very similar (Figs. 1 and 2). To
make a fair comparison between the two window functions,
the zero-order windows of the two functions were matched
with least-mean-square error in the time-domain. The Slepian
sequence in Fig. 1 and Hermite functions in Fig. 2 are the
matching windows (also see Fig. 3).

A. Results

1) Time-Frequency Distribution of EEG:Typical EEG sam-
ples and their TF distributions are shown in Figs. 4 and
5. The spectrogram (B in Figs. 4 and 5) and MW-TFA
images (C, D in Figs. 4 and 5) showed similar features
of the EEG signals. Power in the spontaneous EEG was
concentrated at low frequencies (under 20 Hz). Theta fre-
quency (4–12 Hz) activity was evident in both the entorhinal
cortex and hippocampus EEG recordings (Fig. 5). This is
consistent with normal patterns of EEG activity in these
sites. Variations in amplitude at frequencies near 7 Hz in
both the entorhinal cortex and hippocampal TF images reflect
nonstationarities in theta activity (Fig. 5). Changes in EEG
activity induced by the low-intensity stimulation were often
more apparent in the TF images than in the time-domain
counterparts (Figs. 4 and 5). Power were increased at the
stimulation frequency and its upper harmonics (Figs. 4 and
5). The amplitude of train-induced spectral peaks changed with
the frequency of stimulation. The peak value was found to be
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Fig. 4. (A) Examples of raw EEG activity in the entorhinal cortex (left)
and hippocampus (right) during stimulation of the olfactory cortex with a
pulse-train which ramped from 1–40 Hz. The lower panels show TF image of
these EEG using different TF methods. (B) Spectrogram. (C) MW-TFA using
Slepian sequences in Fig. 1. (D) MW-TFA using Hermite functions in Fig. 2.
The degrees of freedom (DOF) per segment of estimates is approximately
two for spectrogram and eight for MW-TFA’s. Note all the TFA’s show that
stimulation-induced responses peaked near 17 Hz in this animal.

near 15 Hz. A typical example shown in Fig. 4 peaked near
17 Hz.

The differences of the spectrogram and MW-TFA images
are also apparent. The MW-TFA results in poor resolution
(higher bias) in both time and frequency due to a wider
effective time window and broader frequency bandwidth.
The variance of MW-TFA representation is lower than that
of spectrogram, this being due to the benefit gained from
averaging. The resulting MW-TFA representation is more
smoothed (lower variance).

2) Time-Frequency Coherence:One advantage of the MW-
TFA is the ability to obtain TF coherence fromone realization
of the data, which is impossible with the spectrogram using
a single sliding window. The TF coherence in Fig. 6(a) and
(b) shows the clear nonstationarity of the coherent activity
between the entorhinal cortex and hippocampus in the theta
range (near 7 Hz).

For comparison, Fig. 6(c) shows TF coherence function
calculated (method see [4]) using 10 realizations of EEG
recorded during the same stimulation condition. It provided a
good coherence estimation for stimulation-induced responses
in TF plane. However, the nonstationarity in spontaneous EEG
(e.g., theta activity) corresponding to individual realization is
not preserved.

Fig. 5. (A) Examples of raw EEG activity in the entorhinal cortex (left) and
hippocampus (right) during application of a low intensity, 14-Hz stimulation
train to the olfactory cortex. The lower panels show TF image of these EEG’s
using different TF methods. (B) Spectrogram. (C) MW-TFA using Slepian
sequences in Fig. 1. (D) MW-TFA using Hermite functions in Fig. 2. Note
variations in power near 7 Hz (within the theta band) throughout the sweep,
and increased power at 14-Hz input frequency and its harmonics during the
middle 10 s.

3) Comparison Between the Two Window Functions:The
well-matched multiple windows appear to differ only slightly
in the time-domain as shown in Figs. 1–3 for the first four
windows. The Hermite windows had higher leakage and wider
bandwidth than those of Slepian sequences (Fig. 3) in the
frequency domain. Both the higher leakage and broader band-
width will introduce more bias into the estimation. However,
the differences of the two functions did not introduce a
noticeable difference in the MW-TFA results, as can be seen
from Figs. 4–6.

V. DISCUSSION

The MW-TFA of EEG showed similar results as spectro-
gram. These results indicate that signal transmission from
the piriform cortex via entorhinal cortex to the hippocampus
is optimal for frequencies of neural activity near 15 Hz. It
has been reported recently that odors from predator triggers
responses in this frequency range in the olfactory cortex and
hippocampus [16]. This finding, together with our results,
suggests that frequency near 15 Hz effectively transmit EEG
activity between sites in the olfactory system and points to
a role that oscillatory states play in determining the flow of
neural activity from one brain site to another [16].
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Fig. 6. (a) and (b) MW TF coherence functions for the entorhinal cortex and
hippocampus data shown in Fig. 5. Note the enhanced coherence at the 14-Hz
input frequency and its upper harmonics during the middle 10 s. Also note high
coherence values in theta range (near 7 Hz) only at times (at the beginning
of first and third 10 s) when theta activity appears in both the entorhinal
cortex and hippocampus. (c) TF coherence functions calculated using multiple
samples of EEG. Ten realizations of EEG recorded in the same stimulation
condition (14 Hz) from the same animal were used. Although it shows high
coherence values in the theta range (near 7 Hz), the nonstationarity of theta
activity corresponding to each realization was not preserved.

The MW-TFA has been demonstrated as a useful tool to
estimate the TF distribution. Its strengths lie in providing a
low bias and low variance estimate for asingle realization
of data, which is usually the case for nonstationary time-
varying signals. Although the MW-TFA has poorer time and
frequency resolutions than those of the spectrogram, it has a
lower variance. This is consistent with the observation made
by Frazer and Boashash [9]. The most appealing property of
the MW-TFA is that it enables us to estimate theTF coherence
from a single realizationof the time series. This provides us
an effective tool for investigating the temporal relationship be-
tween EEG signals in different brain regions from time to time.
To our knowledge, the work reported in this paper is the first
attempt to extend Thomson’s MW coherence to TF coherence.

We have made a fair comparison between the Slepian
sequences and Hermite functions by matching them in terms
of producing least-mean-square error in the time-domain.
Although there were slight differences in the time- and
frequency-domains for the first few windows, there were
no apparent differences in the TF representations.

The Slepian sequences can also be viewed as the
eigenfunctions of a localization operator over a rectangular
region— in the TF plane [15]. This
rectangular region is maintained when windows are all
employed. When we use the first few windows, these windows
concentrate in a similar circular region in TF plane as that
of Hermite functions.

In the way the MW-TFA is implemented, it is the natural
extension of Thomson’s MWM. The MW-TFA performs mul-
tiple window spectral estimation in a piecewise fashion. Within
a given window centered in time, it uses the Thomson’s

MWM to estimate the spectrum at time. Hence, it is still
a problem of spectral estimation of the time-limited signal.
Since the Slepian sequences are optimal for the analysis of
time-limited signals, for matching windows in time domain
for Slepian sequences and Hermite functions, the estimation
using Slepian sequences should give better estimates. The
Hermite functions and associated eigenvalues, however, are
much easier to calculate in practice. If varying windows are
necessary to capture time-varying components in the signal,
the simplicity of calculation of the Hermite functions might
outweigh the loss of optimality.
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