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A Dynamic Regularized Radial Basis
Function Network for Nonlinear,

Nonstationary Time Series Prediction
Paul Yee,Member, IEEE, and Simon Haykin,Fellow, IEEE

Abstract—In this paper, constructive approximation theorems
are given which show that under certain conditions, the standard
Nadaraya-Watson regression estimate (NWRE)can be considered
a specially regularized form of radial basis function networks
(RBFN’s). From this and another related result, we deduce
that regularized RBFN’s are m.s. consistent, like the NWRE
for the one-step-ahead prediction of Markovian nonstationary,
nonlinear autoregressivetime series generated by i.i.d. noise
processes. Additionally, choosing the regularization parameter to
be asymptotically optimalgives regularized RBFN’s the advantage
of asymptotically realizing minimum m.s. prediction error. Two
update algorithms (one with augmented networks/infinite memory
and the other with fixed-size networks/finite memory) are then
proposed to deal with nonstationarity induced by time-varying
regression functions. For the latter algorithm, tests on several
phonetically balanced male and female speech samples show an
average 2.2-dB improvement in the predicted signal/noise (error)
ratio over corresponding adaptive linear predictors using the
exponentially-weighted RLS algorithm. Further RLS filtering of
the predictions from an ensemble of three such RBFN’s combined
with the usual autoregressive inputs increases the improvement
to 4.2 dB, on average, over the linear predictors.

Index Terms—Neural networks, nonlinear, nonstationary, ra-
dial basis functions, time-series prediction.

I. INTRODUCTION

A LONG with the multilayer perceptron (MLP),radial
basis function (RBF)networks hold much interest in

the current neural network (NN)literature [1]. Their uni-
versal approximation property (UAP)[2] and straightforward
computation using a linearly weighted combination of single
hidden-layer neurons have made RBFN’s, particularly the
Gaussian RBF (GaRBF)network, natural choices in such
applications asnonlinear system identification [3] and time
series prediction [4], [5]. In many approaches, the RBFN is
trained once on a large example set taken from the unknown
plant or times series and believed to capture the essential
dynamics of the underlying system. Thereafter, the network is
allowed to operate autonomously by sequentially generating
outputs in response to newly arriving data. Clearly, such
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an approach is justifiable only when the dynamics of the
plant or time series do not change appreciably over time,
which is a condition that is often violated in practice. As a
result, recent efforts have been directed toward incorporating
some degree of time-adaptivity into the RBFN so that both
nonstationary and stationary processes may betrackedon an
ongoing basis. For example, in the weakly stationary case, one
might assumea priori that the observed output time series is
linear in a number of unknownstate variablesobtained by
transforming the observable input time series through a given
radial basis function (where the input vector is composed from
delayed samples of the input time series). In such a case, if
the observed output process is assumed to contain additive
white Gaussian noise so that the optimal linear weights are
posteriorly Gaussian distributed, we may apply the standard
linear Kalman filter (which in this case reduces to therecursive
least-squares (RLS) algorithm) to recursively estimate the
required weights [6]. In [7], this approach is naturally extended
to a nonstationary case by using anextendedversion of the
RLS algorithm that allows the optimal state-space weights

to drift according to arandom walkmodel [8]. For
modally nonstationary time series, i.e., time series generated
by piecewise constant switching amongst a fixed number
of state-space mappings and first-order Markovian transition
between modes, they further use amultiple model algorithmto
select (via Bayes inference) the “best” predictor from a number
of candidate models running in parallel. Other applications of
Bayesian inference in the nonstationary case can be found in
[9] and [10]. In these works, however,arbitrary nonlinear
state-space mappings, i.e., those not necessarily in the linear
span of the chosen radial basis functions, are accommodated by
extended (in the case of [9]) and iterated (in the case of [10])
extended Kalman filters of second and higher order which
produce recursive Bayes estimates of the RBFN weights that
best approximate (in mean-square) the nonlinear mapping. As
with all methods, the success of these methods hinges on the
validity of their accompanying assumptions.

Our interest in this paper centers on the principled design
and application of regularized RBFN’s to time series predic-
tion. We begin by describing a class of RBFN’s designed
according to the principles ofregularized least-squares fitting
(RLSF) [11], [12]. With proper statistical considerations, the
network class is shown to include asymptotically the well-
known Nadaraya–Watson regression estimate (NWRE)found
in kernel regression [13]–[15]. This relation, along with some
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additional results, allows us to prove the (global) mean-square
(m.s.) consistency of the RBF class as aplug-in predictor for
certain ergodic and mixingnonlinear autoregressive (NLAR)
processes under the same conditions as is known for the
NWRE. In particular, this result implies that the RBF class
yields m.s. consistent predictors for Markovian NLAR time
series generated by i.i.d. noise processes, which can be con-
sidered a first generalization of the usual linear AR processes.
We also investigate the possibility ofdynamically updating
predictors in this RBF class by developing tworecursive
algorithms, where one gives the network infinite memory
and the other finite memory, to deal with the nonstationarity
generated by time-varying regression functions. As a practical
application of the theory, experimental results for speech
prediction are then given in which we also demonstrate how a
number of dynamic regularized RBF networks can be linearly
combined to improve overall prediction accuracy.

II. K ERNEL REGRESSION ANDREGULARIZED

RADIAL BASIS FUNCTION NETWORKS

The application of kernel regression to the minimum m.s.
error (m.m.s.e.) prediction of time series is a firmly established
technique; for an overview, see [16] and [17]. In the following,
the notation “˜” means “is distributed according to,”
denotes the (joint) measure or distribution governing random
variables and , and denotes the corresponding
density.1 Random variables (r.v’s) and processes are generally
capitalized, whereas their realizations are indicated by the
corresponding lowercase, e.g., is the training set r.v.,
whereas is a sample realization of

Assume that we are given a jointly random, discrete-time
process 2,
with a sufficiently “smooth,” time-invariant regression func-
tion

(1)

so that

(2)

where is a zero-mean random process with
for all Note such an exists whenever the

joint process is stationary, but the existence
of does not imply the stationarity of the joint process. For
a trivial example, take to be a (generally)

nonstationary Gaussian process, and ;
clearly, independent of On the other hand,
if is time varying, then it is clear that the joint process
is necessarily nonstationary. We shall have more to say on
these matters further on.

The general structure of a kernel regression estimate (KRE)
of based on a random sample

1All densities in this paper are taken with respect to Lebesgue measure
unless otherwise specified.

is

(3)

where is a weight function. In the sequel, we shall
consider weight functions of the form

(4)

where is usually a non-negative, Riemann
integrable function rapidly decreasing to zero away from
the origin, while is a sequence of positivebandwidth
parameters. The resultant function estimate is an instance of
the Nadaraya–Watson estimate (NWRE)or normalized KRE
[13]–[15]. With the basic conditions

(5)

on the bandwidth sequence, various modes of asymptotic
consistency can be shown to hold for the NWRE in the
cases where is an independent, identically
distributed (i.i.d.) process and (with slight modifications) a
mixing (dependent) process [16], [17]. Of these modes, we
shall be generally interested in the pointwise and m.s. modes.

Within the same regression framework, we now consider a
particular variant of the regularized RBFN and show that it is
a generalization of the NWRE when the two share a common
radial kernel (up to a constant scaling factor). To allow a
direct relation, we will use the so-calledstrict interpolation
(SI) class of regularized RBFN’s, where, as with the NWRE,
one basis function is assigned to each input datum in the
training set. Note that when regularization is present, the term
“strict interpolation” refers to this one-to-one correspondence
between basis functions (orcentres) and the training input
data and should not be taken to mean that the network is
trained to generate a function estimate that agrees exactly
with the training data. We shall generally omit the “SI”
designation for the regularized RBFN’s used in the sequel,
except where necessary to emphasize some particular aspect
of the SI construction.

Recall that for a regularized RBFN designed to solve the
least-squares interpolation problem over a random sample,
the estimate of is given in general form by the linear
expansion

(6)

where

(7)

(8)

are the centres of the expansion, and the notation
indicates the Euclidean norm in weighted by a

symmetric positive definite matrix The linear weights
are then determined as the solution to

(9)
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where

... (10)

is the symmetric, positive definiteinterpolation matrixand

(11)

is the vector of desired outputs ortargetsfor the interpolation
problem. The is a sequence ofregularization
parameters that in the deterministic case, trades off the fidelity
of the resultant interpolation over the sample data with the
smoothness of the estimator From a deterministic point
of view, the estimate (6) is optimal in the sense that it is
the unique solution of the associated regularized variational
interpolation problem

(12)

where

suitable space of “smooth” functions;
(pseudo) differential operator over;

norm.

It is the choice of that determines the kernel for the
regularized RBFN. For example, Gaussian kernels of the form

correspond to operators defined by
an infinite series of exponentially weighted iterated Laplacians
with increasing order and oriented according to the input norm
weighting matrix

In this sense, the estimate constructed above is the
“smoothest” function consistent (up to the regularization pa-
rameter ) with the training data. For more details on the
deterministic RBF interpolation problem, see [18].

To compare the two estimator structures, we may rewrite
the NWRE general form as

(13)

where Moreover, by substituting (9)
into (6), the RBFN can be expressed as

(14)

thus showing that the RBFN is a KRE-type method with an
effectiveweighting function
The similarity of the RBFN weighting function to that of the
NWRE suggests that the two should be parametrically related
(an intuition that is largely correct), as we shall see. We should
mention that while there has been previous work relating
RBFN’s to the NWRE [19], that work considered only nor-
malized, nonregularized RBFN’s in which the parameters are
explicitly chosen to approximate the form of a corresponding
KRE.

Let us define a special class of regularized RBFN’s in
which (and hence ) is permitted to vary with its input

This class is a slight generalization of the usual class
of regularized RBFN’s in which (and hence ) is set once

on the basis of a realized training set for all inputs As
will be explained further on, the generalization does not affect
the overall tenor of the results. In the theorem and proofs,
the related concept of theParzen window (density) estimate
(PWE) [20] also plays a central role.

Theorem 1: Assume that has a stationary marginal
measure and density Let be a compact subset of
with for all Given an NWRE with kernel

and supremum , define as in (8)
with in place of and the associated PWE

of the input density as where
is a constant vector of ones. Then, we have the following.

1) If almost surely (a.s.) for all and if
and are such that

(15)

then such that for any
and , a regularized
RBFN may be constructed such that

a.s.- (16)

where
2) If for all and if and are

such that

(17)

and there exists positive constants and
such that

a.s.- (18)

(19)

- (20)

where is the joint density for
and , then such that

for and ,
a regularized RBFN may be constructed
such that

(21)

where is as before, and

Proof: See Appendix A.
As an aside, we may find in the literature numerous sets of

conditions under which (15) and (17) hold. In particular, we
refer to Lemma 2.1, Theorem 2.2, and Corollary 2.2 in the
case of (15), and Theorem 2.1 and Corollary 2.1 in the case of
(17), all from [17]. For the purposes of this paper, it suffices to
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mention that the conditions include the case where the input
process is dependent, i.e., correlated, according to a
mixing condition [21], [22]. The forms of mixing allowed in
the cited theorems [2- in the case of (17) and the stronger
geometrically strong mixing (GSM)in the case of (15)] are less
restrictive than other types of mixing conditions commonly
assumed, e.g., and -mixing, and include classical ARMA
as well as i.i.d. processes.

From the construction of the approximating RBFN detailed
in the proof of Theorem 1, we see that for sufficiently
large training sets, the NWRE corresponds to a (specially)
regularized RBFN for which at an appropriate
rate. From the RLSF theory, however, we know that by
choosing the regularization parameter sequence via
an asymptotically optimal (a.o.)procedure, the resultant se-
quence of regularized RBFN’s has an asymptoticrisk (as
defined below) which is minimum over all possible choices
of regularization parameter sequences, including the ones with

present in the family and (by approximation)
the NWRE. If we can then determine conditions under which
this “risk” converges (in ) to the desired global m.s.e.,
then by comparison, the regularized RBFN constructed with
an a.o.-selected regularization parameter sequence should be
m.s. consistent whenever the NWRE is. Indeed, this line of
reasoning is pursued in the next section, where we prove
the m.s. consistency of the plug-in predictor formed from
the regularized RBFN for a Markovian NLAR time series
generated by an i.i.d. noise process.

III. PREDICTION USING REGULARIZED RBFNS

Define theapproximation errorfor a regularized RBFN
at time step as

(22)

the loss of with respect to its training set as

(23)

and therisk as

(24)

where we have indicated explicitly the dependence of
(hence, and ) on the chosen regularization parameter;
this dependence will be omitted when it is clear from context.

The main result that we shall exploit from RLSF theory is
that the “optimal” regularization parameter that minimizes
the risk2 lies between zero and infinity, except in certain
pathological cases [11], [23]. While this conclusion has some
bearing on the quality of theglobal estimate of , we
are more interested in the corresponding implications for the
(pointwise) plug-in predictor formed from the estimate of
as In particular, we can show that

2Reference [11] gives this result for the usual case of the input-conditioned
version of the risk, whereas [23] extends this result to the (unconditional) risk
defined above.

the risk converges (in ) to the m.s. value of theprediction
error defined as

(25)

With a view to the speech prediction experiments, we shall
restrict our attention to the specific case of a Markovian
nonlinear autoregressive (NLAR)process of order
and delay , i.e.,

(26)

for , where
, and is an i.i.d. noise process with zero mean,

bounded variance and independent of the initial state vector
Thus, we have an instance of the general

regression case with and or,
equivalently, and (we shall
use either notations as convenient). Note that for , the
vector input process satisfies a similar recurrence

(27)

where is the first unit vector in
Discussion of other more general processes, e.g., the case
where is a heteroskedastic (but still zero mean) noise
process, can be found in [23]. For general, the vector input
process is clearly

a) dependent (by the autoregressive construction);
b) nonstationary (by the action of).

To deal with these issues, we may impose conditions onand
the measure for such that

a) the dependence follows a mixing condition admissible
under Theorem 1;

b) is “asymptotically stationary” in a sense to be
explained below.

A sufficient set of conditions that meets both requirements for
follow.

A.1) satisfies and has an every-
where continuous and positive density with respect
to Lebesgue measure.

A.2) is bounded and Lipschitz in , has (so
that ), and isexponentially asymptotically
stable in the large, i.e., such that
and ,

where is the -fold composition
of applied to

Of the two conditions, the second is obviously the more
restrictive one because it requires that the underlying mapping

satisfy a rather strong contractivity condition (although it
does allow the stable point of the map to be other than

by applying a suitable translation). Exponential decay in
transiently driven physical systems is quite plausible, how-
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ever, which implies that the exponentially asymptotic stability
condition may hold at least locally within a given time
series.

Under these chosen conditions, it can be shown for
that the vector input process is

a) geometrically -mixing (GPM)[16], hence, GSM (since
-mixing implies -mixing);

b) geometrically ergodic, i.e., the sequence of marginal
measures converges at geometric rate (in total
variation norm3 as to a common measure

[21], [24].

The first consequence implies that the dependence created in
(26) is compatible with the mixing conditions supported in
Theorem 1, whereas the second consequence essentially states
that the marginal input measures (and densities) for the r.v.s

approach a common (stationary) measure geometrically
fast as increases. We should mention that we have chosen
this rather weak form of nonstationarity primarily to simplify
the exposition; other conditions can be chosen to permit
stronger forms of nonstationarity [23]. The main point to be
demonstrated here is that with these selected conditions, the
NWRE is an appropriate, i.e., consistent, predictor that can be
approximated according to the Theorem 1.

Returning to the analysis of the m.s. prediction error for
(26) in the case , elementary expansions yield

where the cross-term in the second line vanishes by the inde-
pendence of from , and hence,
Clearly, it is sufficient to relate the risk of to its m.s.
approximation error at time step as we do in the
following.

Theorem 2: Assume that conditions A.1) and A.2) hold.
If, in addition, a) the density of the stationary measure for

is bounded and b) the sequence of estimators is
uniformly bounded a.s.- with a correspondingly bounded
sequence of Lipschitz constants, then

- (28)

Proof: See Appendix B.
The ramifications of this result are two fold:

a) that RBFN training procedures aimed at minimizing
(asymptotically) the risk, such as the a.o. parameter
selection methods for the regularization parameter
sequence described earlier, are also sensible from a
m.m.s.e. prediction point-of-view;

3The total variation normjj � jjV for the spaceL of probability measures

over B( d) is defined asjjP � QjjV
�
= sup

B2B ( ) jP (B) � Q(B)j,
whereP; Q 2 L:

b) that the m.s. consistency of such an a.o.-trained RBFN
follows from that of the corresponding4 NWRE when-
ever conditions admit the approximation results of The-
orem 1.

On the latter point, we note that if the initial state r.v.
is a.s. bounded in norm by a constant, then the an

appropriate compact set for the application of Theorem 1 is
, where is as defined in

A.2. Furthermore, it is not difficult to see that Theorem 1 also
holds for geometrically ergodic input processes by replacing
the common measure, density , and joint densities in
the proofs with the invariant measure, density , and joint
densities , respectively (e.g., see the discussion regarding
pointwise convergence of the marginal input densities to the
invariant density in the proof of Theorem 2). Therefore,
Theorem 1 remains valid under our chosen NLAR process
conditions.

By the argument stated at the end of Section II, Theorem
1 (with the indicated modifications) and Theorem 2 allow us
to conclude that the regularized RBFN predictor is m.s. con-
sistent for the NLAR processes considered. While the NWRE
predictor is also consistent, we know from the discussion of
asymptotic optimality at the end of Section II that only the
regularized RBFN has the flexibility of selecting a sequence

that yields near-minimal risk onceis sufficiently large;
the NWRE, with its effectively unbounded regularization
parameter sequence, will generally have greater asymptotic
risk and, hence, m.s. prediction error. We should add that
although the particular NLAR process conditions we have
chosen are somewhat restrictive, they do allow the use of the
generalized cross-validation (GCV)procedure for calculating
such an a.o. sequence of regularization parameters [12]. It
can be shown that the regularization parameter sequence
produced by the GCV procedure is invariant to rotations
of the data axes in (2). Under the more general condition
of independent but heteroskedastic , only the leave-out-
oneor ordinary cross-validation (OCV)procedure is currently
known to guarantee a.o. estimates of the true risk-minimizing
regularization parameter sequence [25], [26], but this
procedure does not share the rotational invariance property of
the GCV procedure.

IV. RECURSIVE UPDATING FOR

REGULARIZED RBFN PsREDICTORS

As there is no substantial difficulty in doing so, we shall,
where possible, develop the subsequent algorithms for a gen-
eral pair of input/output processes rather than

specifically for the autoregressive case and

Thus far, both the NWRE and regularized
RBFN assume that the process to be predicted admits a
time-invariant regression function; in practice, as our speech
prediction experiment will show, this condition does not al-
ways hold. If the regression functiondrifts slowly with time

4By “corresponding NWRE,” we mean the NWRE trained with the same
data and sharing the same kernel (up to a constant scaling factor) and
bandwidth sequence as a given RBFN; see the proof of Lemma 1 in Appendix
A.
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TABLE I
NWRE BASIC FIXED-SIZE PREDICTION UPDATE ALGORITHM

index as , i.e., exhibits a form oflocal stationarity, the idea
of updating the regression function parameters periodically,
say, every time steps, as new data arrive is intuitively
appealing, particularly when it can be performedefficientlyin a
recursivefashion. The basis of comparison will be the standard
adaptive linear estimation procedures such as the recursive
least-squares (RLS) algorithm. Let us consider the limiting
case and assume for now that, which is the size of
the training set and, hence, the number of basis functions in
the estimate for , is fixed. Before continuing, let us set the
notations for the following discussion.

Subscripts: For vector and (square)matrix quantities, the
first subscriptrefers to itsdimension, whereas for ascalar
quantity, it refers to the dimension of the associated vector
or matrix quantity being indexed. Thesecond subscript, if
present, refers toeither the time indexof the training set from
which the quantity is constructed (in the case of ascalar or
vector function) or a particular elementof that quantity (in
the case of anordinary vector). If a vector quantity’s second
subscript consists of the notation , then we are referring to
the subvector formed from theth element to theth element
inclusive.

Parenthesized Arguments:For nonfunctional quantities, a
parenthesized argument indicatestime dependence, i.e.,
mean quantity uses data up to and including time stepFor
functions, it indicates the usual argument.

As an example, denotes the
realized training set for the network at time step, where in
the NLAR case, this training set is formed from the time series
segment Then, corresponds to
in (8), and corresponds to theth element of in (9)
when is used in place of

Given , which is a realized set of input/output examples
for , and , which is the corresponding regression function
estimate, the problem is to recursively compute , which
is the estimate associated with , from For the
NWRE, this network updating and subsequent prediction are
simple, as shown in Table I. If we are using some data-based
method of selecting the bandwidth, it may also be advanta-
geous to adjust the bandwidth from to
at the same time. The basic order of the updating, excluding
the cost of computing an updated bandwidth parameter, for the
NWRE is , and that of computing the prediction
is

For the regularized RBFN, we shall analyze the effect
of the one-step updating in two stages and thereby find
interesting parallels to the standard RLS estimation algorithm.

In the first stage, we allow the size of the RBFN to grow
with incoming data so that one weight is added per update,
leading to anaugmentednetwork with infinite memory(cf.
for linear adaptive filters, this growth is usually calledorder
recursion [e.g., see [27, ch. 15])]. The second stage is to
simultaneously add one (new) weight and truncate the oldest
weight per update, leading to a network offixed sizewith
finite memory.

This idea of augmenting a RBFN with incoming data was
previously introduced in [28] and later in [9]. Compared with
the latter work, our approach is developed as an optimal
recursive solution to a local interpolation problem and is
thus solidly grounded in the theory of RLSF, which deals
with noise in principled and explicit fashion. In contrast, the
sequential function estimation (s.f.e.) approach of the latter
work assumes that the training data are noise-free, which
may not be realistic in many applications. To ameliorate the
influence of noise and to limit the network growth with their
s.f.e. approach, the latter work then proposes a growth criterion
based on Hilbert function space geometry according to both
prediction error and distance criteria. While such criteria may
be intuitively appealing, no theoretical guidance is provided on
the proper selection of the criteria parameters, nor are the con-
ditions required for their effective application characterized.
By building on the significant body of knowledge surrounding
RLSF and KRE for time series estimation, we are able to
provide analyses of our algorithmic choices and their effect
on prediction performance.

A. Augmented (Infinite Memory) Case

We begin by decomposing the regularized SI
equation for thecombinedrealized training set

as

(29)

which we may write more compactly as

(30)

where , and is the vector
formed from the first elements of the last column of

, i.e., (the notation means
indices to inclusive). Here, as a slight generalization,

is the
diagonal weighting matrix formed from the most recent
regularization parameters up to and including time stepLet

be the previously computed solution to the regularized
SI equation over We
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TABLE II
REGULARIZED RBFN AUGMENTED PREDICTION UPDATE ALGORITHM

assume that the new regularization parameter has
been chosen on the basis of The objective is to
find the new weight and the weight change
vector to be applied to such that theaugmented
regularized SI equation (29) is satisfied. The solution is

(31)

(32)

The resultant prediction update algorithm is listed in Table II.
Because is also the vector of basis function outputs
of the previous network from time step in response to
the newly available input , we see that the new
weight is merely a scaled version of the
a posteriori estimation error, i.e., the estimation error that
would have been obtained had the previous weight vector

been updated to In contrast, the
weight change vector is proportional to thea priori
estimation error, i.e., the actual estimation error using the
previous weight vector prior to any updating, which is
similar to what occurs in the RLS algorithm. This partitioning
of roles between and is intuitively
satisfying; the change applied to the existing weight
vector attempts to account for estimation error incurred by
the existing (nonupdated) network, whereas the new weight
element attempts to account for the estimation
error remaining after the existing network has been updated.
Analogous to the RLS algorithm, we may also expect the
ratio of the m.s.a priori and the m.s.a posteriori estimation
errors to converge to unity as if the regression

function being estimated is not significantly time varying. If
the ratio is nonconvergent, it may be an indication that old
training samples are no longer representative of the regression
function behavior currently being estimated. For this situation,
the effectivememoryof the RBFN can be limited by fixing
its size to weights/basis functions computed from the most
recent training data available, which leads us to the second
stage of updating described next.

B. Fixed-Size (Finite Memory) Case

Let us return to the original task and assume that the size
of the RBFN is fixed at weights/basis functions. The desire
is to relate , which are the weights satisfying the
regularized SI equation over , to the previously
computed weights , which do the same for Before
we do so, let us establish the notations. Decompose the
regularized SI equation for the previous training set as

(33)

where is the vector of the last elements of the
first column of the previous interpolation matrix , i.e.,

This time, the objective is
to find and satisfying

(34)

In other words, the new weight vector for the updated network
can be considered the result of

i) shifting the last weights in the old weight vector
which are associated with the most recent

data in upwards into positions 1 to and
setting the th element to zero;

ii) adding a perturbation to the shifted vector
iii) adding a new weight in the th position.

It is not difficult to show that the resultant update
equations become

(35)

(36)
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TABLE III
REGULARIZED RBFN FIXED-SIZE PREDICTION UPDATE ALGORITHM

Except for the additional term in (36), the
forms of the update equations for this fixed-size case are
identical to those for the augmented case. The additional term
can be regarded as embodying the effect of weight vector
augmentation from size to followed by truncation
to the weights computed from the most recenttraining data.
We summarize the prediction update algorithm for the fixed-
size case in Table III. Note that the formula (81) in updating
step 9 follows the identity in (37), shown at the bottom of
the page.

Although the parallels between the recursive update al-
gorithms described here and those in the RLS algorithm
are interesting in their own right, we must be careful not
to conclude that the algorithms presented are merely ex-
pressions of the RLS algorithm after a nonlinear mapping

We can see this dif-
ference clearly in the fact that infinite memory regularized
RBFN’s require an infinite number of weights/basis func-
tions; fixed-size regularized RBFN’s can only have a finite
memory of the same size. This condition stands in contrast
to the situation with the RLS filter where a fixed number
of weights are updated to reflect all the past history of the
input data. Of course, the exponentially weighted variant
of the RLS algorithm is commonly used in practice, and
we can argue that its memory is, for all practical purposes,
limited. Indeed, the introduction of the exponentially weighted
variant of the RLS algorithm was motivated by the heuristic
that decaying memory would improve estimation when the

input/output processes are nonstationary, although it has now
been established that this notion is, in fact, generally incorrect
[29]. In this respect, the fixed-size regularized RBFN is
somewhat more explicit in the way it deals with nonstation-
arity.

With both the augmented and fixed-size update algorithms,
their computational efficiency is derived from the low rank of
the perturbation applied to the existing interpolation matrix
at a given time step through augmentation and addition,
respectively. Exploiting the matrix inversion lemma can then
reduce the update complexity to (for basis functions)
per time step. As may be expected, the experimental results for
speech prediction show that thesepartial updatealgorithms
can result in loss of tracking and degraded performance
compared with afull update algorithm in which the the
bandwidth and/or regularization parameter is updated forall
entries of the regularized interpolation matrix and not
just those involving the new basis function vectors (in
the case of the augmented updates) and (in the case
of the fixed-size updates). The update complexity per time step
in this full update case is naturally greater at compared
with the partial update case. Nevertheless, the recursive update
algorithms for both cases provide useful insight into the
essential character and operation of the dynamic regularized
RBFN as a time series estimator.

V. APPLICATION TO SPEECH PREDICTION

For a benchmark problem with real-world data, we turn
to speech prediction. That the human speech signal is gen-
erally nonlinear and nonstationary is well-known; even so,
the linear prediction of speech withanalytic methods such as
the LMS/RLS/Kalman algorithms [27] andsyntheticmethods
such as CELP [30] has been met with surprising success.
Of course, these results are achieved after significant prior
knowledge regarding the characteristics of human speech have
been carefully embedded into the corresponding methods
to realize maximum performance. In contrast, we should
emphasize that our interest in speech as the test signal for
the proposed algorithms is limited to the characterization
of the gains possible from nonlinear and nonstationary pro-
cessing and should not be taken to imply that the pro-
posed predictors (in their current form) are either practical
or optimally tuned for actual speech prediction applications
such as speech coding. Further, speech-specific research and
evaluation would clearly be necessary to reach that state.
That said, the results of the following experiments in which
both the partial and full update algorithms for the fixed-size
network case are evaluated (albeit with different motivations)
do offer evidence of the performance gains possible when
the nonlinearity and nonstationarity of speech signals are
addressed.

(37)
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A. Experiment 1: Partial Update Algorithm
for Fixed-Sized Networks

We begin by giving some results for the fixed-sized update
algorithm of Table III. At this stage of development, we focus
our attention on the practical issues of predictor tracking
stability and performance versus the fixed-size full update
algorithm.

1) Description of Speech Data:We use a 10 000-point
speech sample of a male voice recorded at 8 kHz and
8 b/sample while speaking the sentence fragment “When
recording audio data ” The speech data, which appear
to have no discernible noise, are approximately zero-mean
and normalized to unit total amplitude range. Applying the
Mann–Whitney rank-sum test as described in Section V-B1
rejects the null hypothesis that the speech sample is that
of a stationary linear process with a maximum sample
statistic of less than 13 (a statistic of less than 3 is
considered grounds for strong rejection), hence indicating a
high probability of nonlinearity in the speech sample.

2) Approach Using Regularized RBFN’s:In the main, we
follow same the approach as in the full-update case discussed
in Section V-B2, except for the following modifications.

Input Order: A common input order of is used for
each network (unless otherwise indicated).

Regularization Parameter: For a given network, fixed for
the duration of prediction over the input signal, i.e.,

for all
Update Algorithm: Except during reset (see the following),

we follow Table III, where the updated norm weighting matrix
is computed according to the input data covariance

formula described in the corresponding section below for the
full update case. The updated norm weighting matrix, however,
is applied only to the new basis functions in the updated
column in (34) to maintain consistency with the
usual SI fitting relation , where

is the estimate of produced by the network
at time step

Reset Algorithm: As can be seen, the partial updating
algorithm implies that the networks produced no longer exactly
solve the interpolation problem (12) [since with partial updates
the interpolation matrix is not identical to the one
specified by the interpolation problem over ]. The ac-
cumulation of these partial updates to the interpolation matrix
over many consecutive time steps can lead to a loss of tracking
and instability. To counteract this problem, we monitor the
prediction error of the dynamic network at each time
step and reset the network, i.e., restart the partial update
algorithm from the initialization step 1 of Table III, when one
of two possible conditions, denoted (RC.1) and (RC.2), are
met:

(RC.1)

(RC.2)

where for a sequence , is the sample
mean, and is the sample standard deviation of

Thus, a predictor reset occurs when a
probable large deviation (as set by thewindow parameter

Fig. 1. Tracking ability of static (upper) versus dynamic (lower) predictors
(solid is actual, dashed is predicted).

and threshold parameter ) has occurred in either the
two-sided (RC.1) or one-sided (RC.2) prediction error. For
our experiment, we use reset condition (RC.1) with window

and threshold as there appears to
be no substantial difference in performance compared with
condition (RC.2). In the ideal case that prediction error is
a white Gaussian process, the choice ofcorresponds to a
large deviation probability of approximately 0.0063%. Not
unexpectedly, the actual reset rate in the experiment is quite
a bit greater due to heavy tails in the prediction error density.

These design decisions yield networks with moderate com-
putational complexity and reasonable performance that suit the
basic purpose of demonstrating the partial update algorithm for
fixed-size networks. Further optimization of the design choices
with their concomitant increased computational load are no
doubt possible but will not be pursued here.

3) Dynamic Updating and Regularization for Speech Pre-
diction: Using Figs. 1 and 2, we can briefly argue for the
practical utility of dynamic updating and regularization for
speech prediction. In the former figure, we compare the initial
predictions of a dynamic predictor trained according to the
partial update algorithm (without reset) for a

fixed-size network with those from a static
predictor whose network parameters are frozen

after the initial training. Not surprisingly, even with more
than twice the number of basis functions, the static predictor
quickly loses track of speech signal in transition from a
quickly to a slowly varying portion of the input signal, as
shown in the figure. The dynamic predictor, however, is able
to adapt and maintain its prediction performance. Regarding
regularization, although RLSF theory implies that is
a consistent choice when no noise is present, in practice,
some regularization is necessary because the likelihood of a
singular/ill-conditioned interpolation matrix increases
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Fig. 2. Regularized versus nonregularized predictors,n = 100; p = 2 (solid
is actual, dashed is predicted for� = 0:1; dash-dot is predicted for� = 0:01):

Fig. 3. Partial update algorithm, fixed-size case with reset versus without
reset (solid is actual, dashed is predicted with reset, dash-dot is predicted
without reset, star indicates reset point).

as increases. Empirically, this effect appears especially
pronounced for small values ofin which the predictor output
is more sensitive to individual inputs in the input vector. An
example of this phenomenon can be seen in Fig. 2, where
we contrast the predictions for two partially updated (without
reset) fixed-sized predictors, one of which is trained with a
fixed and the other with a fixed Again, it is
evident that sufficient regularization is useful from a numerical
point of view to combat instability.

4) Comparison of Partial Update Algorithm with and With-
out Reset:Fig. 3 gives an example of the efficacy of the reset
criterion (RC.1). After detecting a relatively large deviation in
the prediction error at the starred point (time step 3419), the
partially updated fixed-size predictor with reset reinitializes
to avoid the obvious stability problem exhibited by the same
predictor without reset. Since reset is triggered at approxi-
mately 1% of all prediction time steps for the case
shown, the example shown is by no means isolated, although
the magnitude of tracking loss displayed is among the largest
observed for that case.

5) Comparison to Full Update Algorithm:Ultimately, we
would like to compare the performance of the fixed-size
dynamic network algorithm using partial updating and reset
[according to RC.1)] to the same with full updating. As the
performance measure, we use the PSNR as described for
the full update case in Section V-B.3. Table IV shows that
the overall performance loss for the networks using partial

TABLE IV
PREDICTION PERFORMANCE OFFIXED-SIZE ALGORITHM

WITH PARTIAL UPDATE VERSUS FULL UPDATE

Fig. 4. Reset points in second 2500 predicted points for partial update
algorithm, fixed-size case (solid is actual, dashed is predicted, stars indicate
reset positions).

updating compared with those using full updating varies from
a relatively minimal 0.28 dB for the predictor to
a more substantial 0.74 dB for the predictor. From
a computational standpoint, the figures for the percentage of
points at which reset is triggered indicate that the partially
updated fixed-size dynamic predictor has only 1% of the
computational complexity of the corresponding fully updated
fixed-size dynamic predictor. While this reset rate is two
orders of magnitude larger than expected in the ideal case of
white Gaussian prediction errors, it still easily satisfies the
basic distribution-free upper bound of 1/166.25% implied
by the Chebyshev inequality, viz.

Prob

where and are the true, i.e., distributional, mean
and standard deviation of a process

Fig. 4 shows the points of reset for the par-
tially updated fixed-size dynamic predictor from time steps
2500–5000. It is interesting to note how in this segment the
predictor resets occur at points of a regime shift within the
speech sample. Because the performance/computational trade-
off between the two update techniques is influenced by several
factors such as the length of prediction, the speech segment
being predicted, etc., further characterization is necessary to
make more definitive statements; nonetheless, the results can
be considered encouraging.

6) Comparison to Previous Work:The same speech signal
was also used as part of two previous studies, both of which
are based onpipelined recurrent neural networks (PRNN’s)
followed by standard linear adaptive filters [31], [32]. PRNN’s
represent another method of modeling nonstationary dynam-
ics based on the use of explicit feedback between modular
network elements, each of which is itself a (recurrent) neural
network. While considerably different in the details of their
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architectures and training methods, they do share the common
principle of continuously adapting their network parameters
to minimize their squared prediction error and, thus, track
nonstationary signal characteristics. Comparing our results in
Table IV with those of [32, Table III], we see that even our
worst-performing case of partial updating yields a PSNR of
13.71 dB, which is 0.12 dB better than the best PSNR of
13.59 dB listed in Table II for a hybrid extended RLS (ERLS)-
trained PRNN followed by a 12th-order RLS filter. To be
fair, however, the computational complexity of our
partial updating method with centers is most likely
somewhat greater than that of the ERLS PRNN with three
eight-input single-neuron modules used in [32]. On the other
hand, their predictor has the benefit of an additional level of
RLS linear prediction not (yet) present in our scheme, and their
performance figures are reported using the variance rather than
mean-squared value of the prediction error, both which should
bias their results upwards compared with our PSNR figures
(see the discussion in Section V-B3). Of course, it would be
premature to draw any substantial conclusions on the basis
of a single speech signal, which leads us to consider the more
comprehensive suite of longer, phonetically balanced male and
female speech signals in the next experiment. Over this test
suite, we shall also show the performance increase possible
from employing a similar final level of RLS linear prediction.

B. Experiment 2: Full Update Algorithm
for Fixed-Size Networks

As we previously mentioned, our objective in this set
of experiments is to demonstrate that even without signif-
icant tuning, the dynamic regularized RBFN can provide a
nontrivial improvement in prediction SNR over the standard
LMS/RLS algorithm-based predictors. We also indicate the
further improvement possible in exploiting the residual corre-
lations between the predictions of several dynamic regularized
RBFN’s and the predicted, i.e., desired, speech signal by way
of an additional stage of RLS estimation.

1) Description of Speech Data:The speech data to be pre-
dicted consist of samples from ten different male and ten
different female speakers, each reading a distinct phonetically
balanced sentence. In their original format, the continuous
speech signals were 16-b linear PCM and sampled at 16 kHz
rate with 8 kHz bandwidth. These samples were subsequently
filtered by a third-order Butterworth filter with a cutoff fre-
quency of 3.2 kHz, decimated to 8 kHz rate, and recentered
to zero-mean. Both the original and final speech signals are
of high quality with little discernible background noise. The
sentence samples and some of their key characteristics as
discrete time series are summarized in Tables V and VI. As
can be seen from these tables, the total length of a speech
signal being tested varies from approximately 2.5–4 s.

Before beginning, it is useful to quantify the degree of non-
linearity in the speech samples, as this factor will ultimately
determine the gains possible in our approach. Using some soft-
ware for chaotic time series analysis developed by the chem-
ical reactor engineering group at Delft University of Tech-
nology in the Netherlands [33], the method of surrogate data

TABLE V
MALE SPEECH SAMPLE PARAMETERS

TABLE VI
FEMALE SPEECH SAMPLES PARAMETERS

analysis [34] with a Mann–Whitney rank-sum test rejects the
null hypothesis that each speech sample is that of a stationary
linear process with a maximum samplestatistic of less than

13 in each case (a statistic of less than 3 is considered
grounds for strong rejection). This result indicates that signif-
icant benefit from nonlinear processing should be possible.

2) Approach Using Regularized RBFN’s:The particular
approach taken is to treat each speech sample as a realization
of a discrete-time Markov process of orderobeying (26).
For one-step-ahead (1-SA) prediction , we consider the
limiting case of per time step updating, i.e., Key design
issues to consider are the following.

Input Order: Preliminary experiments showed that for
a given speech sample, the prediction performance of the
dynamic regularized RBFN varied with the order, depending
on the local characteristics of the speech over which the
network was operating. For example, in the transition periods
between voiced, unvoiced, and silent segments, networks with
small , e.g., , were generally found to perform better
than those with large , e.g., Conversely, within
a given type of speech segment, the networks with larger

tended to be the better predictors. While techniques for
estimating the order of NLAR processes have been recently
proposed [35], for computational simplicity, three fixed-sized
networks with 10, 30, and 50 are run in parallel for each
speech sample and, as we shall see later, linearly combined.

RBFN Parameters: Based on some previous work [36],
each of the networks is chosen to have the following.

network size: A fixed-size of basis functions is
used. This fixed-size corresponds to the assumption that
a useful memory for the networks is 12.5 ms, which is
the average length of the 5–20-ms window of stationarity
usually associated with speech.
basis function: The “smooth” [in the sense of satisfying
(12)] Gaussian basis function is used.
norm weighting matrix: Common to all basis functions is
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TABLE VII
GCV CRITERION FUNCTION EVALUATION LIMITS

a diagonal norm weighting matrix whose inverse, at
time step , is set to times the diagonal of the empirical
covariance matrix for the input samples in This
particular form of the norm weighting matrix allows the
multidimensional network basis function to be decomposed
into a -fold product of one-dimensional (1-D) (Gaussian)
kernels, each with bandwidth parameter equal to the vari-
ance of a particular window over In the 1-D i.i.d.
density estimation setting, such a form of bandwidth has
been shown to be consistent in the sense [37].

Regularization Parameter: For each of the three networks
( 10, 30, and 50), the regularization parameter for each time
step is selected as the value that minimizes the GCV criterion
function evaluated over 1000 logarithmically spaced points
from to for that network as given in Table VII.
Since the speech signals are largely noise free, the upper bound
on prevents undue over-regularization, whereas the
lower bound is necessary to ensure the numerical nonsingular-
ity of the regularized SI matrix at each time step. The slight
differences in the evaluation limits account for the varying
degrees of sensitivity of each network to these two conditions.

Update Algorithm: Because the norm weighting matrix
is updated forall network basis functions when new

data arrive, the update from to is full rank, and
hence, (34) must be solved directly without using the recursion
aids (35) and (36). It was found in previous experiments [36]
that the speech samples were sufficiently nonstationary so that
without careful choice of the update parameters indicated in
first Updating step of each algorithm, the recursively updated
fixed-size network outputs would frequently loose track of the
speech samples within an order oftime steps from the last
full-rank update. Notwithstanding the results of the previous
section, the issue of how best to select the update parameters
in the recursive fixed-size update algorithm to minimize per-
formance loss from partial updating remains an open question.

3) Comparison to Linear RLS Algorithm and Previous
Work: The performance measure we shall use is thepredicted
signal-to-noise ratio (PSNR)defined for an actual or input
signal sequence by

PSNR dB (38)

where and are the actual and error signalpowers
estimated by

where (39)

and is the network prediction for actual signal The
PSNR can be considered a measure of thegeneralization

TABLE VIII
OVERALL EXPERIMENTAL RESULTS FORSPEECH

PREDICTION, SAMPLES m130–m134 (ALL PSNRIN dB)

TABLE IX
OVERALL EXPERIMENTAL RESULTS FORSPEECH PREDICTION

EXAMPLE, SAMPLES m135–m139 (ALL PSNRIN DECIBELS)

performance of the dynamic network since in our NLAR case,
each prediction at time step is for the first
time series pointoutside the window of
data effectively seen during training sequential data are
needed to form This effective training window, along
with the predicted point, shift forward in time as the dynamic
network advances through the entire input signal sequence.
Although, strictly speaking, the test set per time step is a single
(out-of-sample) point, by iterating the training/prediction cycle
over the available input time series (the number of samples in
each speech signal listed in Tables V and VI less samples
for initialization), this pointwise prediction performance can be
averaged to gauge the generality of our method. For example,
the PSNR figure in Table VIII for network 1 operating on
signal m130 is computed according to (38) and (39) with

effective test data.
Note that in our case of zero-mean input signals, because

we use estimated signal powers rather than estimated signal
variances, as is sometimes the case in defining the PSNR,
the following performance figures are somewhat conservative
(for example, a nonzero mean level of error will degrade
performance by the former definition but not by the latter
definition). That said, the PSNR results of the three RBFN
predictors individually and jointly (as will be explained) over
the complete speech samples can be found in Tables VIII–XII.
Summary tables of minimum, average, and maximum per-
formance gains are listed in Tables X, XIII, and XIV for
the male only, female only, and joint male/female samples,
respectively. The first four lines of each table list the individual
predictor performances along with their arithmetic average.
We see an average gain of 1.65 dB of the basic regularized
RBFN predictors over the RLS predictor for the male speech
samples while the average gain for the female speech samples
is somewhat better at 2.67 dB. Over both the male and
female speech samples, the average gain is 2.2 dB. The
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TABLE X
SUMMARY OF GAINS IN EXPERIMENTAL RESULTS FORSPEECH

PREDICTION, MALE SPEECH SAMPLES (ALL FIGURES IN DECIBELS)

TABLE XI
OVERALL EXPERIMENTAL RESULTS FORSPEECH PREDICTION,

SAMPLES f150–f154 (ALL PSNR IN DECIBELS)

TABLE XII
OVERALL EXPERIMENTAL RESULTS FORSPEECH PREDICTION

EXAMPLE, SAMPLES f155–f159 (ALL PSNRIN DECIBELS)

TABLE XIII
SUMMARY OF GAINS IN EXPERIMENTAL RESULTS FORSPEECH

PREDICTION, FEMALE SPEECH SAMPLES (ALL FIGURES IN DECIBELS)

TABLE XIV
SUMMARY OF GAINS IN EXPERIMENTAL RESULTS FORSPEECH PREDICTION,

MALE AND FEMALE SPEECH SAMPLES (ALL FIGURES IN DECIBELS)

RLS predictor performance reported in the fifth line (with
the corresponding autoregressive input order and exponential
weight in parentheses) is the best one observed in a series of
experiments for which the parameters vary as in Table XV. To
allow a fair assessment of the gains possible from nonlinear
versus linear prediction, the maximum orderof the linear
predictor is set to 50, which is the same as for the RBFN.
With regards to nonlinear speech predictors, these figures
are in general agreement with those in previously published
work [32], [38], [39]. In particular, [38] reported an increase
in prediction gain of 2.8 dB when a nonlinear predictor is
trained on the residuals of a time-varying LPC predictor, which
may be considered alinear-nonlinear processing scheme.

TABLE XV
TRIAL PARAMETERS FORREFERENCEADAPTIVE LINEAR PREDICTOR (a:h:b

DENOTES SEQUENCE FROMa TO b INCLUSIVE SAMPLED AT h; PPP (0) IS INITIAL

INVERSE OFINPUT CORRELATION MATRIX, � IS EXPONENTIAL WEIGHT)

As previously mentioned in Section V-A.6, [31] and [32]
considered enhancing their nonlinear predictor performance
by including a final stage of adaptive linear prediction, with
the latter work showing gains of between 1.6 and 2.0 dB
over the final linear stage by itself. We follow this point
of view to improve our nonlinear predictor performance by
linearly combining the three predictor outputs, resulting in the
nonlinear-linearprocessing scheme described below.

4) Linearly Combining Predictor Outputs for Improved
Performance: During the course of the experiment, we noted
that the error sequences produced by an ensemble of nonlinear
predictor outputs trained on a given speech sample with
different parameters exhibit some residual correlation with
the desired prediction. This observation suggested that by
standard properties of least-squares estimators, some further
improvement in prediction performance should be possible
when the predictor outputs are used as inputs in an additional
level of regression on the desired (actual) speech signal. In
selecting a compatible structure for this subsequent processing,
it was desirable to retain as much as possible the recursive on-
line nature of the algorithm without significantly increasing the
computational burden. Thus, the sixth line of the overall result
tables shows the best observed performance for each speech
sample when the three RBFN predictor outputs
and at each time step are formed into 3-tuples

and taken as regressive vector inputs
into another exponentially-weighted RLS predictor orlinear
combiner (to avoid confusion with the reference adaptive
linear predictor). As before, the regressive orders and weights
of the best such RLS linear combiners are given in parentheses
following their performance figures and are chosen from trials
conducted over the parameter ranges specified in Table XVI.
In most cases, only the most recent RBFN predictor outputs
are necessary to provide a further nontrivial performance gain
averaging 1.64 dB over both the male and female speech
samples. Augmenting the RBFN predictor output 3-tuples with
autoregressive inputs drawn directly from the speech samples
gives an additional small improvement of 0.51 dB for the
male speech samples and 0.27 dB for the female speech
samples, on average, for the best observed linear combiners.
The exact performance figures for this nonlinear-linear input
configuration are given in the seventh line of the tables, where
the notation in parentheses is (nonlinear 3-tuple order linear
autoregressive order, RLS weight). Table XVII lists the trial
parameter ranges in this final configuration for which the
average performance gain over the RLS predictor for both
male and female speech samples is 4.18 dB. We note that
this average performance gain is approximately 2 dB greater
than that reported in the relevant rows of [32, Tables II–IV],
although that study was limited to three speech signals. This
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TABLE XVI
TRIAL PARAMETERS FORRLS LINEAR COMBINER ON RBFN OUTPUTS ONLY

(a:h:b DENOTES SEQUENCE FROMa TO b INCLUSIVE SAMPLED AT h; PPP (0) IS

INITIAL INVERSE OFINPUT CORRELATION MATRIX, � IS EXPONENTIAL WEIGHT)

TABLE XVII
TRIAL PARAMETERS FORRLS LINEAR COMBINER ON BOTH RBFN

OUTPUTS AND AUTOREGRESSIVEINPUTS (a:h:b DENOTES SEQUENCE

FROM a TO b INCLUSIVE SAMPLED AT h; PPP (0) IS INITIAL INVERSE OF

INTPUT CORRELATION MATRIX), � IS EXPONENTIAL WEIGHT)

gain naturally comes at the price of increased computational
complexity, namely, per time step, where is the
number of basis function, versus for the linear RLS
predictor, where is the linear autoregressive order. Whether
the increased computational complexity of the regularized
RBFN predictor over a linear one such as the RLS predictor is
acceptable depends on the intended application, but we should
note that further gains in the nonlinear predictor’s performance
over the linear one should (at least in principle) still be possible
since not all network parameters were fully optimized, e.g.,
the bandwidth parameters.

VI. CONCLUSION

We have presented two theorems relating the NWRE to the
regularized RBFN that justify its application to nonlinear time
series prediction. In the case of certain NLAR processes, we
show that minimizing the risk over the training set is asymp-
totically optimal in the global m.s. prediction error, thereby
demonstrating the key role regularization plays in the RBFN.
To deal with the nonstationarity induced by a multimodal
time-varying regression function, recursive algorithms for the
periodic updating of RBFN parameters have been developed
for both the infinite and finite memory cases that exhibit
significant resemblance to the standard RLS algorithms and
allow for similar interpretations. Experiments conducted on a
suite of phonetically balanced male and female speech samples
demonstrate the nontrivial gains over linear techniques possi-
ble when the nonlinear processing of the regularized RBFN is
applied to the one-step-ahead prediction of NLAR processes.
We also describe how a simple linear combination of an
ensemble of nonlinear predictor outputs via the RLS algorithm
can yield further improvements in prediction performance with
little added computational complexity while alleviating the
difficulty of optimal model parameter estimation.

APPENDIX A
PROOF OF THEOREM 1

In the proof, the following lemma for NWRE approximation
with regularized RBFN’s in the deterministic case will be
useful.

Lemma 1: Let be an NWRE with radial kernel

, where , and with bandwidth
parameter designed from a given training set Then, for
any , , and such

that the denominator of is not zero,
a regularized RBFN with kernel may be constructed
such that

(40)

where , i.e., is element-wise bounded by , and
where is a constant vector of ones.

Proof: Letting , where is an exponent
to be determined later, we may equivalently write the NWRE
output as

(41)

Consider the regularized RBFN (with kernel) constructed
from using the scaled outputs in place of and with

.
Comparing the NWRE output to the output of this regular-
ized RBFN, we find that the difference can be bounded (by
Cauchy–Schwarz) as

(42)

Using the Euclidean norm as an upper bound for all quantities
except for , which we bound in Fr̈obenius norm as

, we obtain

which can be written for our choice of as

(43)

The condition on in (42) can be satisfied by choosing

(44)
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Main Proof: Building on Lemma 1, we treat each case
separately.

1) It is easy to show that (15) implies that by choosing
to satisfy

(45)

we have for all
Hence, for , we may replace with
in the denominator of the upper bound, and the term

can be dominated by selecting a sufficiently
large constant to multiply the numerator of the order
bound, i.e., such that for

(46)
From the basic KDE consistency condition ,
requiring ensures
that the approximation error vanishes with increasing

2) While the convergence rates for this case must be at
least as rapid as for the a.s. uniform case [by squaring
and taking expectations on both sides of (42) before
computing the sup on the left-hand side], we can obtain
slightly better convergence rates with tighter m.s. esti-
mates of the terms in (42). We begin be noting that it
is sufficient to demonstrate the corresponding result in
absolute value since

(47)

where the supremum is for sufficiently large
by assumption (18). Returning to the expectation term,
taking expectations with respect to on both sides of
(42), and applying Cauchy–Schwarz gives

(48)

The first term squared can be asymptot-
ically bounded in Euclidean norm as

a.e. (49)

where is the standard norm with respect to
Lebesgue measure, and we have used the fact that (see
in [17, eq. (2.10)])

a.e.

(50)

where is the usual norm with respect to
Lebesgue measure. Similarly, we bound the second term
squared in Fröbenius norm and apply (50)
with Lebesgue dominated convergence to obtain

(51)

where we have applied (19). For the square of the middle
term, we may again apply the majorization
and use the same argument as for (46) to obtain the
estimate

when (52)

for some and Next, we may substitute
for in the expectation with error bounded by

(53)

where whence, by Cauchy–
Schwarz

(54)

By (18) and (20), the first sup term is (at least) bounded
for sufficiently large, whereas the second term van-
ishes by (17). Therefore, we have that forsufficiently
large

(55)

The square of the last term is bounded (by
assumption) by so that combining the square
roots of the previous terms leaves us with the conclusion
that for sufficiently large , we have (56), shown at the
bottom of the next page. In order for (48) to be valid,
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we require that (42) hold uniformly over , leading to
the previous condition of ,
where is as defined in (45). As an aside, if (17) is
weakened to the corresponding mean-input case, then
(42) need only hold a.s.- Finally, the lower limits of 1
and imposed on by the maximum function ensures
that the upper bound on the m.s. approximation error in
(21) decreases as by the consistency condition

The implications of these approximation theorems are dis-
cussed in greater length in [23, Sec. 2.1]. Here, we merely note
that while the introduction of is motivated by its utility in
the proofs, the arguments contained therein imply, nonetheless,
that over any given compact set , the approximating
regularized RBFN’s have growing asymptotically at rateat
least 5 for in the uniform case and

for in the m.s. case, i.e., at least roughly
in both cases. Thus, for our purposes of comparison

with regularized RBFN’s trained in the “usual” way, i.e.,
with a single regularization parameter determined once from
a realized training set and used thereafter over the entire
network domain, it suffices to consider the NWRE as (roughly
speaking) “infinitely” regularized RBFN’s.

APPENDIX B
PROOF OF THEOREM 2

Before proceeding, we shall need the following elementary
lemma concerning the convergence in probability of one-
nearest neighbor distances.

Lemma 2: Let
be consecutive samples from a geometrically

ergodic process with stationary (marginal) measure
Then, for each

(57)

where is the Euclidean norm in

Proof: Let be given. Set
We use the independence bound implied by

Cauchy–Schwarz for the intersection of a finite collection of
events defined with respect to a common probability
measure

(58)

5f(n) = 
(g(n)) means9C > 0 such thatjf(n)j � Cjg(n)j for all n
sufficiently large.

where is the indicator function for eventso that

(59)

Let and be the marginal densities of and with
supports and , respectively. Then

(60)

By the geometric ergodicity of , the first integral
can be made arbitrarily small for sufficiently large (since

by the triangle inequality
, where is the

stationary measure for ), whereas the second integral
can be expressed as

(61)

in which the first term is no greater than unity, whereas
the strict positivity of the second term given follows
from that of the integrand. To see this last fact, note that
given any , when , the integrand must be strictly
positive because a) is assumed absolutely continuous with
respect to Lebesgue measure, hence,must have nonzero
Lebesgue measure, and b)is almost everywhere (Lebesgue)
continuous; therefore, an arbitrary radius open ball centered
at almost all points of must have nonzero measure.
The proof can now be completed: Given , take
sufficiently large so that for all Then, for

all , we have , as required.
We generalize slightly the definitions of loss and risk from

Section III. Define the (squared-error) loss of an estimate
with respect to a true function given as

(62)

(56)
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and the risk , i.e.,

(63)

Similarly, define the global m.s.e. or risk as

(64)

By identifying with and with

[by letting ], we can prove Theorem
2 as a slightly modified version a corresponding theorem from
[23]. Conditions a) and b) in the preamble of Theorem 2
correspond to conditions 1 and 2 stated below.

Theorem 3 [23]: Assume that is bounded as and

Lipschitz with constant over If
is a geometrically ergodic process, with stationary measure
absolutely continuous with respect to Lebesgue measure via
density and satisfying the following.

1) There exists a positive constant satisfying

(65)

2) There exist positive constantsand for the regular-
ized RBFN estimate constructed from satisfying
for ,

a.s.- (66)

a.s.- (67)

where is a Lipschitz constant for
Then

a.s.- (68)

Proof: First, we note that when the process
is geometrically ergodic as assumed, (65) implies that the
corresponding sequence of marginal densities is also
bounded, i.e., there exists such that

(69)

where is the marginal density for The geometric
ergodicity condition implies the (Lebesgue) a.e. pointwise-
convergence of to as (by choosing to be
a point set when applying the definition of total variation
norm in footnote 3). Thus, can be bounded either by

, when for some sufficiently large, or by
for

For convenience of notation, let
Consider the -cover induced by a

realized training sequence , i.e.,

An equivalent disjoint
cover may be obtained by replacing in the definition

of with , where

is the Voronoi cell centred at of the partition induced by
the input sequence contained in Decompose with
respect to , where (as will be explained later)
so that

(70)

By the assumed boundedness ofand condition (66) on ,
Lemma 2 implies that the latter integral can be made arbitrarily
small for sufficiently large since for any

(71)

when satisfies

(72)

where is a global upper bound on, and is
as defined in Lemma 2. For the former integral, we may write

(73)

and by the definition of and the fact that and
are bounded and Lipschitz implies the same forwith

Lipschitz constant not greater than

Here, the notation is shorthand for the double

inequality , where is an expression
containing The remainder term containing can be
bounded uniformly over all possible training realizations
(equivalently, over all possible training input realizations)
since

and (74)

by (69) and where we have used the (Euclidean) volume of
a -dimensional cube in with edge to upper-bound the
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volume of corresponding closed ball of radiusHence, we
have the deviation bound

(75)

For the remainder term to vanish as
, we require that for some

At the same time, the inequality

(76)

implies that we cannot let decrease too quickly as
if (72) is to be satisfiable for with

since for small, In other words,
for (72) to hold with , it is necessary that

for some Equating the two
exponents gives the relationship betweenand as

(77)

Returning to the integral term in (75), we recombine the
iterated expectation and note that

(78)

(79)

where we have again invoked Lemma 2 in the last line for
, as defined in (72). Combining the inequalities (71), (75),

and (79) yields

(80)

where the condition is required for (72) to hold.
This result implies that the asymptotic rate of convergence
of to can be made arbitrarily close to
(but strictly less than) , from which the desired
conclusion follows.

We note that (67) is satisfied when, e.g., the kernel function
is Lipschitz since we have assumed in both condition

A.2) and the theorem preamble that the underlying mapis
Lipschitz and chosen conditions so that the NWRE and, hence,
the RBFN converge to in a compatible mode. Furthermore,
for the smooth functions and absolutely continuous measures
assumed throughout, m.s. convergence over a compact set
implies pointwise a.e. convergence; hence, the estimates
must converge to a Lipschitz function.
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