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The primary purpose of this paper is the improved detection
of a nonstationary target signal embedded in a nonstationary
background. Accordingly, the first part of the paper is devoted to a
detailed exposition of how to deal with the issue of nonstationar-
ity. The material presented here starts with Lo`eve’s probabilistic
theory of nonstationary processes. From this principled discus-
sion, three important tools emerge: the dynamic spectrum, the
Wigner–Ville distribution as an instantaneous estimate of the dy-
namic spectrum, and the Lo`eve spectrum. Procedures for the
estimation of these spectra are described, and their applications
are demonstrated using real-life radar data.

Time, an essential dimension of learning, appears explicitly in
the dynamic spectrum and Wigner–Ville distribution and implicitly
in the Loève spectrum. In each case, the one-dimensional time
series is transformed into a two-dimensional image where the
presence of nonstationarity is displayed in a more visible manner
than it is in the original time series. This transformation sets the
stage for reformulating the signal detection problem as an adaptive
pattern classification problem, whereby we are able to exploit the
learning property of neural networks. Thus, in the second part of
the paper we describe a novel learning strategy for distinguishing
between the different classes of received signals, such as: 1) there
is no target signal present in the received signal; 2) the target
signal is weak; and 3) the target signal is strong.

In the third part of the paper we present a case study based on
real-life radar data. The case study demonstrates that the adaptive
approach described in the paper is indeed superior to the classical
approach for signal detection in a nonstationary background.

I. INTRODUCTION

The detection of a target signal in a background of noise
is basic to signal processing. The term “noise” is used
here in a generic sense; its exact description depends on
the application of interest. The need for signal detection
arises in many diverse fields, as summarized in Table 1.
The detection problems summarized in this table may be
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grouped under two headings, depending on how the raw
data originate:

1) Time Series—radar, sonar, digital communications,
and scientific data;

2) Images—magnetic resonance images, positron emis-
sion tomographs, mammograms, X-ray photographs,
nondestructive testing of metals, detection of explo-
sives in carry-on bags, and detection of land mines.

In this paper, we focus attention on the first class of
signal detection problems. Nevertheless, many of the ideas
described herein also apply to the second class.

The classical approach to the design of a signal detection
system is to optimize a time-invariant (i.e., fixed) receiver
structure for a known class of signals with unknown pa-
rameters that are corrupted by noise of known statistics
[1]–[3]. The parameter used in the design is the likelihood
ratio of the received signal. When, however, the noise
is nonstationary but is of known form, the receiver must
take on a time-varying structure, making its design more
difficult [4]. The design becomes even more difficult when
the statistics of the noise are unknown. Our interest in
this paper lies in the class of signal detection problems
described as that of detecting a nonstationary target signal
in a nonstationary environment of unknown statistics. This
is the most difficult class of signal detection problems.
For example, in radar, sonar, and mobile communications
systems, nonstationarity of the received signal arises due
to variations in environmental conditions. Although it may
be feasible to view the received signal in such systems
as quasi-stationary in the very short term, and possi-
bly stationary in long-term averages, at the intermediate
time-scales useful for engineering applications the received
signal can be significantly nonstationary. In radio systems,
for example, it is usually a reasonable assumption that
the continuum (as opposed to impulsive) noise may be
approximately stationary for ms to s, and also if it is
averaged over months. The solar component of such noise,
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Table 1 Areas of Application Where Signal Detection Arises

however, varies on both the 5-min scale of the solar-
modes [5], and also with the 26-day solar rotation and
the 11-year solar cycle [6]. In the radar data used in this
paper we find unexpected evidence for cyclostationary, or
periodically correlated, behavior in the clutter.

To deal with the issue of unknown statistics of the addi-
tive noise, we may use a neural network (NN) to compute
the likelihood ratio of the received signal by training it
on different realizations of the received signal. Such an
approach is described in [7]–[9]. The NN’s described in
those references belong to the class of focused time-lagged
feedforward networks, focused in the sense that a short-term

memory structure (used for dealing with time) is confined
entirely to the input layer of the NN. In [10] it is shown
that these networks are universal approximators of myopic
nonlinear dynamic systems. Unfortunately, however, their
use is limited to stationary processes. To deal with a
nonstationary process using an NN approach, the implicit
effect of time has to be distributed inside the synaptic
structure of the NN as described in [11], or else a recurrent
NN has to do the learning in a dynamic fashion [12].

In this paper, we take a different approach for dealing
with signal detection in a nonstationary environment. We
proceed by first computing two-dimensional (2-D) image
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representations of the received signal that account for the
nonstationary nature of the signal. In so doing, we account
for time in an explicit sense, thereby transforming the
detection problem into an adaptive pattern classification
problem that lends itself to learning [13]. Such an
approach to adaptive signal detection is described in
[14]–[17]. This approach is philosophically distinct from
classical detection procedures: the parsimonious, but
frequently overly simplified models of signal and noise
are replaced by a highly redundant and overcomplete
representation of the received signal.

The main body of the paper is organized as follows.
Section II discusses the nonstationary behavior of a signal
and the related issue of time-frequency analysis in general
terms. Section III presents a theoretical background for
dealing with nonstationary signals. This discussion leads
naturally to an overview of procedures for estimating
the spectrum of a nonstationary signal in Section IV. In
Section V we present some results on the time-frequency
analysis of real-life clutter data as an illustrative example of
the procedures described. Section VI describes a modular
learning strategy for the detection of a target signal embed-
ded in a nonstationary background. Section VII presents
highlights of a case study that builds on this detection
philosophy. Section VIII discusses the issue of cost func-
tions for supervised training of the pattern classifiers in
the adaptive receiver. The paper concludes with some final
remarks in Section IX.

II. A N OVERVIEW OF NONSTATIONARY BEHAVIOR

AND TIME-FREQUENCY ANALYSIS

The statistical analysis of nonstationary signals has had
a rather mixed history. Although the general second-order
theory was published during 1946 by Loève [18], [19], it
has not been applied nearly as extensively as the theory of
stationary processes published only slightly previously by
Wiener and Kolmogorov. There were, at least, four distinct
reasons for this neglect.

1) Loève’s theory was probabilistic, not statistical, and
there does not appear to have been successful attempts
to find a statistical version of the theory until some
time later.

2) At that time of publications, the mathematical train-
ing of most engineers and physicists in signals and
random processes was minimal and, recalling that
even Wiener’s delightful book was referred to as “The
Yellow Peril,” it is easy to imagine the reception that
a general nonstationary theory would have received.

3) Even if the theory had been commonly understood
at the time and good statistical estimation procedures
had been available, the computational burden would
probably have been overwhelming. This was the era
when Blackman–Tukey estimates of the stationary
spectrum were developed, not because they were
great estimates but, primarily because they were
computationally more efficient than other forms.

4) Finally, it cannot be denied that the general the-
ory was significantly harder to grasp than that for
stationary processes.

Nonetheless, it was realized that many, perhaps most,
of the signals being worked with were nonstationary and,
starting with the available tools, i.e., the ability to estimate
the spectrum of a stationary signal, the spectrogram was
developed. The idea was that, if the process is not “too”
nonstationary, then for a relatively short time block a
“quasi-stationary” approximation can be used, so that for
the length of the block the spectrum can be approximated
by its average. It was also recognized that a major drawback
of the spectrogram is that the block lengths and offset
between blocks are arbitrary. Thus, although speech, un-
derwater sound, radar, and similar communities have much
empirical experience to guide such choices, little can be
done with a new, possibly unique, data series except “cut
and try” methods. Consequently, it is common to regard the
spectrogram as a heuristic orad hocmethod.

To account for the nonstationary behavior of a signal,
we have to include time (implicitly or explicitly) in a
description of the received signal. Given the desirability
of working in the frequency domain for well established
reasons, we may include the effect of time by adopting a
time-frequency description of the signal. During the last
20 years many papers have been published on various
estimates of time-frequency distributions; see, for example,
[20] and the references therein. In most of this work, the
signal is assumed to be deterministic. In addition, many of
the proposed estimators are constrained to match time and
frequency marginal density conditions. If is a time-
frequency distribution of a signal it is required that
the time marginal satisfy the condition

and, similarly, if is the Fourier transform of the
frequency marginal density must satisfy the condition

where denotes continuous time anddenotes frequency.
Given the large differences observed between waveforms
collected on sensors spaced short distances apart (see, for
example, [21]), the time marginal requirement is a rather
strange assumption. Worse, the frequency marginal distribu-
tion is, except for a factor of just the periodogram of
the signal. Since it has been known since at least the 1930’s
that the periodogram is badly biased and inconsistent,1

and we have personally experienced engineering data [22]
where the periodogram was wrong by more than a factor of
10 over most of the frequency range, imposition of such
a constraint must be viewed skeptically as well. Thus we do

1A biased estimate is one where the expected value of the estimate
differs from the value of the quantity being estimated. An inconsistent
estimate is one where the variance of the estimate does not decrease with
sample size. The periodogram is an unstable, wrong, answer.
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not consider matching marginal distributions, as commonly
defined, to be important.

Similarly, several estimates have been proposed that
attempt to reduce the cross terms2 in the Wigner–Ville
distribution (WVD) by using the analytic signal instead
of the original data. However, as the analytic signal is
commonly derived by Fourier transforming the data, dis-
carding the negative frequency components, and taking the
inverse Fourier transform, the frequency-domain bias of
the analytic signal is dominated by the periodogram bias.
The opinion has been expressed that these concerns apply
only in a near-pathological data set and that the sidelobe
performance of the Slepian sequences is rarely needed.
We consider this opinion ill advised as we rarely know
in advance what sidelobe performance is needed. (Slepian
sequences are defined in Section III-B.) As an example, the
dynamic range of the spectrum for the radar data used in
this paper exceeds 10so an estimate constrained to match
periodogram marginals could easily be in error by an order
of magnitude over most of the frequency domain.

This being said, the WVD used in the following is
computed by the standard, basic form. We have several
reasons for leaving the WVD unaltered.

1) As we describe it below, the expected value of the
WVD is just a coordinate rotation of the Loève
spectrum. It is not, however, a particularly good
statistical estimate.

2) The basic WVD is a sufficient statistic in that it can be
inverted to recover the original data to within a phase
constant [23]. Thus, although it is not an attractive
estimate from a statistical viewpoint, its completeness
properties allow it to be effective in our application
(i.e., signal detection).

3) The data used here are complex valued, so there is
no need to estimate the analytic signal.

4) The cross terms are visually distinctive and so may
be a significant help in recognizing that more than
one component is present in the received signal.

In the final analysis, whether we adopt the stochastic
or deterministic approach to time-frequency analysis for
representing the nonstationary behavior of a signal depends
on details of the problem of interest. It is easy to imagine
problems where one or the other of these two approaches
would be preferable, but there are other problems, such as
the radar data used in our examples, where a good case can
be made for both viewpoints.

III. T HEORETICAL BACKGROUND

Suppose we are given data consisting of a single finite
realization of contiguous samples of a discrete-time
process for henceforth, denotes
discrete time. We assume that the process is harmonizable

2Cross terms arise when the Wigner–Ville distribution is applied to the
sum of two signals. The Wigner–Ville distribution of such a sum is not
equal to the sum of the Wigner–Ville distributions of the two signals; the
difference is accounted for by the cross-terms.

[19] so that it has the Cram´er, or spectral, representation

(1)

where is the increment process. In this paper,
we also assume that the process has zero mean, that is,

and, correspondingly, (Note
that this is not the same as assuming that an average has
been subtracted from the data.) As parameters of interest,
consider then the covariance function

(2)

and the generalized spectral density

(3)

where indicates complex conjugate. Equation (3) de-
scribes the essential feature of nonstationary processes,
namely, that there is correlation between different frequen-
cies.

If the process is stationary, the covariance de-
pends (by definition only) on the time difference , and
the Lòeve spectrum becomes
where is the ordinary power spectrum. Similarly,
for a white nonstationary process, the covariance function
becomes where is the expected power
at time Thus, as both the spectrum and covariance
functions include delta function discontinuities in simple
cases, neither should be expected to be “smooth,” and
continuity properties depend on direction in the
or plane. These problems are more easily dealt
with by rotating both the time and frequency coordinates
of the generalized correlations (2) and spectral densities (3)
respectively by 45 In the time domain, we define the new
coordinates to be a “center” and a delay as shown in
the following:

(4)

Equivalently, we may write

We denote the covariance function in the rotated coordi-
nates by and so write

(5)

Similarly, we define new frequency coordinatesand
by writing

(6)
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Equivalently, we may write

Denote the rotated spectrum by

(7)

Substituting these definitions in (2) shows that the term
in the exponent of the Fourier transform

becomes and so

(8)

Because is associated with the time differenceit corre-
sponds to the ordinary frequency of stationary processes and
we refer to it as the “ordinary” or “stationary” frequency.
Similarly, because is associated with the average time
it describes the behavior of the spectrum over long time
spans, and we refer to as the “nonstationary” frequency.
Now consider the continuity of as a function of and

On the line the generalized spectral densityis
just the ordinary spectrum with the usual continuity (or lack
thereof) conditions normally applying to stationary spectra.
As a function of however, we expect to find afunction
discontinuity at if, for no other reason, that almost all
data contain some stationary additive noise. Consequently,
smoothers in the plane (or, equivalently, the
plane) should not be isotropic, but they require much higher
resolution along the nonstationary frequency coordinate
than along the ordinary frequency axis

A slightly less arbitrary way of handling the coordi-
nate is to Fourier transform with respect to the
“nonstationary” frequency and define

as the theoretical “dynamic spectrum” of the process. The
motivation is to transform the very rapid variation expected
around into a slowly varying function of while
leaving the usual dependence onBecause functions in
frequency transform into a constant in time, in a stationary
process does not depend on and becomes
Writing as

(9)

we see that the rotated Loève spectrum is the expected value
of the WVD. This relation has been rediscovered several
times (see, for example, [24]). Note carefully, however, that
unlike the standard WVD, is defined to be an expected
value.

Stated in another way, the WVD is the instantaneous
estimate of the dynamic spectrum and therefore
simpler to compute than the dynamic spectrum. Taking the
complex conjugate of (9) shows that is real, and, as
the Fourier transform of a covariance, must be nonnegative

definite (see [25]). In many ways, current discussions about
positivity of the WVD and similar distributions are reminis-
cent of those occurring in papers in the 1945–1970 era on
whether the normalization or was “correct”
for estimating lag- autocorrelations. The correct answer
was that direct calculation of sample autocorrelations was
a bad idea in any case and, given that the wrong estimate
was being computed, the normalization was more-or-less
irrelevant!

A. Multiple Window Estimates

Multiple window estimates of the spectrum [26] are
a class of estimates based on approximately solving the
integral equation that expresses the projection of
onto the Fourier transform of the data Taking the
Fourier transform of the observed data, that is

and using the spectral representation (1) for we have
the fundamental equation of spectrum estimation

(10)

where the Dirichlet kernel is given by

(11)

There are several points that must be remembered about
this fundamental equation.

1) Because we may take the inverse Fourier transform
of and recover for is
a sufficient statistic and completely equivalent to the
original data.

2) The finite Fourier transform is not equivalent to
the spectral generator Remember that
is assumed to generate the entire data sequence for
all not just the portion observed.

3) Despite definitions given in many elementary texts
is not the spectrum, even in the limit

of large It is the periodogram, biased and incon-
sistent.

4) While (10) is formally a convolution of with a
Dirichlet kernel, it is more constructive to think of
it as a Fredholm integral equation of the first kind.
As such, it does not have a unique solution. It does,
however, have useful approximate solutions. We men-
tioned above that “multiple window estimates” does
not refer to a particular estimate, but rather to a
class of estimates: the class is defined by the method
used to form the necessarily approximate solution of
the integral equation. Viewed in this way, spectrum
estimation is in reality an inverse problem.

As multiple window methods have been described in [27]
and in many papers, and since they are becoming the
“standard” in geophysics [28], elaborate description of their
properties is unnecessary; the reader is referred to [29]–[32]
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for details, and we give only the equations necessary to
define notation here.

B. Spectrum Estimation as an Inverse Problem

Recall the fundamental equation (10) and attempt eigen-
solution of the integral equation on the interval

by assuming that the observable portion of has the
expansion

(12)

on the local frequency domain Here
is a Slepian function (discrete prolate spheroidal

wave function, see [30, Appendix A] for definitions). Using
the integral equation and properties of the Slepian functions
we obtain the raw expansion, or eigencoefficients

(13)

as the Fourier transform of the data windowed by
the th Slepian sequence, We retain the

coefficients corresponding to functions with eigen-
values for subsequent inference. These eigenco-
efficients represent the information in the signal projected
onto the local frequency domain. This process resembles
conventional, windowed spectrum estimation in that a fast
Fourier transform may be used for efficient computation,
but it differs in that standard estimates are best regarded as
the first term of the multiple window expansion.

Because the Slepian sequences are time limited, they
cannot be strictly bandlimited, and theth sequence has
a fraction outside the interval
Uncorrected, this out-of-band energy contributes bias which
can be severe for the higher order, or transition eigen-
coefficients, that is those of order Among the
various ways of dealing with this exterior bias, the best
method found to date is by coherent sidelobe subtraction
as outlined in [29]. Here we choose the bandwidth
to be large enough so that the bias on the lower order
terms is negligible and for
thereby estimating the higher order eigencoefficients by

for larger The bias estimate
is formed from an exterior convolution of the Slepian

sequence with an estimate of (12) and iterated. Denote the
estimated eigencoefficients by and collect them in
the vector

(14)

To see the dependence on the bandwidthof the estimate,
recall that there are windows with eigenval-
ues near 1. If the spectrum is flat within the local domain,
the coefficients are uncorrelated because the windows are
orthogonal, and each contributes two degrees of freedom
so estimates of the form have degrees of
freedom, where denotes Hermitian transposition. If
is too small, we have poor statistical stability, but if

is too large, the estimate has poor frequency resolution.
Typically is chosen between and with a
time-bandwidth product of four or five being a common
starting point. Thus or with corresponding

or gives estimates with 12 or 16 degrees of
freedom.

We must emphasize, however, that these only apply to
the simplest forms of estimates and both quadratic inverse
estimates (see [29]–[32]), and free parameter estimates of
the type described therein give high-resolution estimates
that are, within reason, largely independent of the choice
of These estimates also give implicit extrapolations of
the time series.

IV. HIGH-RESOLUTION MULTIPLE-WINDOW

SPECTROGRAMS

Beginning with the estimate of defined in (12), define
the narrowband process

where denotes addition with the constraint that
On taking the inverse transform of the Slepian function,

becomes

where is the th eigenvalue. Clearly the complex
function is not a time-frequency distribution but
more akin to the output of a filter bank. Note first, however,
that if we write the approximate impulse response of the
implied filters, they go from maximum phase at
through zero phase at to minimum
phase at Second, as defined here
extrapolates the signal tooutside the interval
and so resembles the Papoulis estimates [33]. The squared
amplitude gives power as a function of time and
frequency

(15)

and is an effective high-resolution spectrogram. Integrating
this distribution over time gives the basic multiple window
spectrum estimate

(16)

and so gives a much more accurate distribution of
power than time-frequency distributions that simply match

Similarly, integrating over frequency gives

(17)
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or, approximately, the convolution of with
Thus within a resolution interval

power is approximately localized in
time. Similarly, the narrowband properties of the Slepian
sequences imply that cross terms are negligible for
components separated in frequency by more than so
the time-frequency resolution area is of order one. There
are, however, two problems with this estimate: first, its
distribution is proportional to so it is statistically
unstable; second, in common with time-frequency
distributions of the form (see [20, ch. 14]), this
estimate can be thought of as

and so has “mixed” continuity properties caused by inte-
grating across the expected-function sheets at 45 degrees
in only one of the two variables. A more serious criticism
is that, although such estimates satisfy enhanced marginal
conditions, they appear to overlook the essential feature
of correlation between frequencies more than apart.
Nonetheless, this “high-resolution” spectrogram represents,
in applications where the spectrogram is useful, a vast im-
provement on the standard version. This estimate, like other
multiple window estimates, can obviously be extended to
include overlapping data sections, so high-resolution spec-
trograms of long data sets can be formed by averaging the
above estimates. Much more, indeed, is possible. Extending
the definition (13) to make the base positionexplicit

(18)

we have, corresponding to (15)

(19)

where again represents a restricted sum, with
(Given the extrapolation properties of these

estimates, mentioned above, this restriction is not strictly
necessary, only conservative.) Section IV-A, on nonstation-
ary quadratic-inverse estimates, discusses another way to
improve on the standard spectrogram, and the Section IV-
B shows how the basic expansion may be used to
estimate correlations between frequencies.

A. Nonstationary Quadratic-Inverse Theory

The problem of stability in the above estimate can be
“solved” by quadratic-inverse theory [30]–[32]. This is a
way to generate minimum-variance unbiased estimates of
second-moment quantities directly from the eigencoeffi-
cients of the linear inverse solution without going through
the ad-hoc procedure of generating the linear inverse,
squaring, and then estimating the required second moments
from these. Here we compute the eigensequences of the

squared kernel (rigorously, the squared truncated kernel)

(20)

These sequences rapidly approach those of the continuous
time problem [34], and there are approximately
nonzero eigenvalues. Thus we have approximately

for and, as the variances of
the quadratic-inverse coefficients are proportional to
the first few coefficients are nearly as stable as the standard
multiple window spectrum. The associated bases matrices

(21)

are real, symmetric, and trace-orthogonal; that is

(22)

The expansion coefficients corresponding to are

(23)

and so we have

(24)

The coefficients are often informative in their own
right (see [31] and [35]). In particular, the zero-order
function is approximately constant so
and is approximately standard multiple-window spec-
trum. The order-one function is approximately equal
to Thus is zero on the diagonal
and approximately constant on the sub- and superdiago-
nal, and is approximately the first time-derivative
of the spectrum, and so on. One usefulad-hoc quan-
tity is , approximately the time-derivative of

For example, in [35] computed from
residuals of a global temperature series from 1854–1992,
was almost uniformly negative across frequencies. While
one must consider the series formally as nonstationary, the
most reasonable explanation is not metaphysical, but simply
that instrumentation and spatial coverage has improved
since 1854. In this example the quadratic inverse estimates
are preferable to a spectrogram or the Loève spectrum; the
decrease in power is relatively small and the data series
has only 138 samples, so computing a spectrogram would
be difficult and could be easily misinterpreted. Here, the
negative derivative of the noise spectrum probably reflects
little more than the improvements in instrumentation and
spatial coverage that have occurred since 1854.

Expanding of (16) in terms of the ’s, it can
be seen that the resulting coefficients are biased by

However is biased and positive, whereas
truncation and Gibb’s ripples can cause to be
negative.

Although spectrograms are insensitive to correlations
between widely different frequencies, when the temporal
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evolution of the spectrum is slow, spectrograms form a
useful intermediate class of time-frequency distributions.
Quadratic-inverse estimates improve on the spectrogram by
allowing for changing power within the block, and for tests
between blocks.

While the basic theory of multiple-window methods is
usually written in terms of a finite block size we
can obviously apply the same methods to overlapping
time blocks to form spectrograms [29]. On each block
we estimate a dynamic spectrum its frequency
derivative (from [30]), time derivative
(from [23]), and perhaps higher terms. These low-order
terms are very stable with variances proportional to
Because is approximately the spectrum, is
approximately the first time-derivative of the spectrum,
etc. We can either make a “smoother” that uses these
or, better, given and we can test if an
estimate is “reasonable.” Also, the “Nyquist
sampling rate” for is simply so

samples spaced are obtained in each time block.
Thus, if the blocks are offset by we have estimates
at each point of the time-frequency plane, so that averages
and variances can be computed. The covariances between
blocks can be computed, tests for homogeneity of correlated
variances are known, so the procedure can be used to test
whether a choice of and is reasonable. Assuming
that the estimate is reasonable, note that the average of the

’s at each resampling time will be reasonably stable.
Because of correlations between blocks, the stability of an
average will be much less than degrees-of-freedom, but
the long lower tails characteristic of distributions
are considerably suppressed. We use log spectra because:
formally, the information content of a signal is measured by
its Wiener entropy- a logarithmic measure; pragmatically,
most engineering applications are designed for human use
and both the eye and ear have a logarithmic response. With
the exception of helioseismology, it is difficult to find plots
of power spectra which are not on a logarithmic (or decibel)
scale. Thus we have a spectrogram with both good stability
and time resolution.

Incidentally, taking either a log spectrogram or
into a singular value decomposition

and then analyzing the time eigenvectors as standard time
series is often very useful (see [29]).

B. Multiple Window Estimates of the Lo`eve Spectrum

Taking the complex demodulates at two different frequen-
cies and an obvious estimate of their covariance
is

(25)

where the normalization is proportional to the number
of independent samples. The orthogonality of the Slepian
sequences gives

(26)

This is the estimate given in [26] and generally works well
(see [36], [37] or [38]). An alternative motivation is that,
if we consider the product of two estimates of the form

(27)

for then, guided by the continuity arguments of
Section III, we use a weight so that
smoothing over a bandwidth is done on the stationary
frequency, and no smoothing on the nonstationary direction,
the same estimate is obtained. A similar smoothing scheme
was proposed in [39] and applied effectively in [40].

It is often useful to plot the dual-frequency spectrum as
a dual-frequency coherence, that is, defining

(28)

plot a dual-frequency magnitude-squared coherence
and the phase. Significance level calculations

for this magnitude-squared coherence (MSC) are exactly
the same as they are for ordinary MSC calculations (see
[41]).

There are far too many extensions of this approach to
describe in detail here; however, an indication of some
directions should be mentioned.

1) The correlation estimate in (26) can be extended to
include a time delay, that is ave

which results in a quadratic form

(29)

2) We may use a similar quadratic form with, for exam-
ple, to test for energy transfer between frequen-
cies. More generally, for a specific spectral pattern of
interest, a weight is chosen to emphasize
it, and the integration over results
in an appropriate weight matrix.

3) Treat as a matrix, possibly scaling by
compute its singular value decomposition

(SVD), then treat the dominant time-eigenvectors as
new time series.

4) The same procedures can be applied to multi-
variate time series; in bivariate problems compute
ave or similar, or several series
can be “stacked” in the SVD process.

5) In communications signals, it is common to encounter
the same signal with sidebands reversed. In this case
the appropriate smoother would be perpendicular to
the standard one and, as in [26], can be obtained by
leaving the second coefficient unconjugated.

V. SPECTRUM ANALYSIS OF RADAR SIGNALS

We now apply these ideas to three radar data sets: sea
clutter (i.e., radar backscatter from an ocean surface) on
its own, weak target signal in clutter, and strong target
signal in sea clutter. The target signal was due to the echo
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(a) (b)

(c)

Fig. 1. Spectograms. (a) Radar clutter only data set, HH channel, eight windows, three sections,
step ten. (b) Radar weak growler data, HH channel, eight windows, three sections, step ten. (c)
Radar strong growler data, HH channel, eight windows, three sections, step ten.

from a small piece of ice “growler” floating in the ocean
under the dynamics of the ocean waves. Note that these are
actual data, not simulations, and consequently the clutter
components in all three series are necessarily different and
the energy in the clutter component of the series varies with

conditions. Each series consists of 256 complex samples
taken at ms.

Fig. 1(a)–(c) shows high-resolution spectrograms of the
data computed by the method of Section IV but averaging
the results of ten sections of 229 samples each, each offset
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(a) (b)

(c)

Fig. 2. Loève transform. (a) Radar clutter only data, set, HH channel, eight windows, three sections,
step ten. (b) Radar weak growler data, HH channel, eight windows, three sections, step ten. (c) Radar
strong growler data, HH channel, eight windows, three sections, step ten.

by three samples. A time-bandwidth product of six was used
with windows on each section. The bandwidth is
thus Hz. The section offset used here
is smaller than recommended above and the section averag-
ing used to suppress the lower tails of the distribu-
tion. (Normally, we would not attempt to compute a spec-
trogram from a sample of size 256.) Fig. 1(a), the spectro-
gram of the clutter, shows a band near110 Hz with more
power than elsewhere, but otherwise the spectrogram is rea-
sonably flat over the clutter spectrum. The contribution due
to receiver noise is about 20 dB below the clutter spectrum.

By contrast, Fig. 1(b), the spectrogram of the weak
growler, shows a strong, frequency-independent vertical

stripe (due to clipping of the time series) near ms
as well as a second frequency stripe at about25 Hz in
addition to the features visible in the clutter spectrogram.

With the strong target, Fig. 1(c), the stripe centered near
0 Hz (representing the Doppler shift of the target signal)
is much more obvious, the clutter band is still there, and
there is a weaker clutter image band, possibly due to a
slight imbalance in the in-phase and quadrature channels of
the coherent receiver.

Fig. 2(a)–(c) shows the estimates of the corresponding
Loève spectra, and the gain in information beyond that
apparent in the spectrogram is striking. First, the diagonal
bands evident in all three series show that the data are
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periodically correlated, or cyclostationary; this was not
obvious in the spectrograms, nor expected. In Fig. 2(a) it
can be seen that the peak of the Loève spectrum for clutter
is near 125 Hz, as before. In Fig. 2(b), the weak target
signal case, an extra peak centered at about25 Hz, while
in Fig. 2(c), the strong target signal case, the peak near zero
is dominant but, in contrast to the spectrogram, the periodic
correlation of the clutter is still visible.

Fig. 3(a)–(c) presents the corresponding WVD of the sea
clutter on its own, weak target in sea clutter and strong
target in sea clutter, respectively. The important feature
to observe here is the presence of a zebra-like pattern
(alternating between dark and bright narrow stripes) in
the images due to the presence of a target signal. This
pattern occupies an area located between the instantaneous
frequency plot of the target near 0 Hz and that of the clutter.
This pattern is indeed a manifestation of the cross WVD
terms due to the combined presence of a target signal and
clutter. Most importantly, the presence of this zebra-like
pattern is found to be 1) fairly pronounced at relatively
low target signal-to-clutter ratios and 2) relatively robust to
variations in the target signal-to-clutter ratio [17].

Although the high-resolution spectra estimates of Figs. 1
and 2 based on the method of multiple windows display
the dynamic spectrum of the radar signals in ways that
are similar (in some parts) and yet different (in other parts)
from the corresponding WVD of Fig. 3, the important point
to note from these two differently computed sets of images
is that both approaches accentuate the differences between
the different classes of radar signals in their own individual
ways, making them more visible than the original time
series. Simply put, the power of these methods lies in their
ability to make a weak target signal buried in a strong clutter
background visible in signal-processing terms.

VI. M ODULAR LEARNING MACHINE FOR

ADAPTIVE SIGNAL DETECTION

Regardless of whether we use the high-resolution images
exemplified by Figs. 1 and 2 or the WVD of Fig. 3, these
two approaches do share a common property: the one-
dimensional time series representing the received signal
is transformed into a highly redundant 2-D image. For
the detection strategy to be computationally efficient, the
redundant information contained in this image would have
to be removed by some means. This is not so different
from signals such as speech where redundancy is stripped
for coding and then added later for error protection.

In pattern recognition theory, the removal of redundant
information is referred to as feature extraction [42], [43].
Traditionally, feature extraction is followed by pattern
classification. At the output of the pattern classifier a
decision is made as to whether the image applied to
the feature extractor, or equivalently the original received
signal, belongs to one of two possible (hypotheses) classes.

1) Null Hypothesis, : The received signal consists of
noise alone.

(a)

(b)

(c)

Fig. 3. (a) WVD for a clearly visible growler. (b) WVD for a
barely visible growler. (c) WVD for sea clutter. For the images,
horizontal axes: time in seconds; vertical axes: frequency in Hz.
Horizontal axes of power spectra: in dB.

2) Other Hypothesis, : The received signal consists
of a target signal plus noise.
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Fig. 4. Block diagram of the two-channel receiver.

In other words, we have a binary hypothesis testing prob-
lem, the solution of which is optimized in some statistical
sense.

Fig. 4 shows the block diagram of amodular learning
machine[17], [44] for adaptive signal detection, based on
the strategy described. At the input end of the machine we
have a time series-to-image transformer that uses dynamic
spectrum analysis or time-frequency analysis for its design.
From that point on, the machine splits into two channels,
one termed the noise channel and the other termed the target
channel. The two channels are linearly combined at their
outputs, and then a final decision is made as to whether a
target signal is present in the received signal or not.

Each channel consists of two functional blocks: feature
extractor and pattern classifier. A popular method for im-
plementing the feature extractor is principal components

analysis (PCA), the aim of which is to learn the dominant
eigenvectors that are most representative of the differ-
ent realizations of the pertinent class of data. In basic
mathematical terms, this operation involves performing an
eigendecomposition on the covariance matrix of a data
vector obtained by scanning the image on a column by
column basis, arranging the eigenvalues in decreasing order,
and retaining only those eigenvectors that are associated
with the dominant eigenvalues. In effect, the PCA performs
a subspace decomposition on the images belonging to class

or class and converges onto a solution that captures
the features that are most common to the different physical
realizations of the class in question. Accordingly, when
an image representing class for example, is projected
onto the two subspaces computed by the noise and target
channels, the outputs of the feature extractor in the noise
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channel are relatively small, whereas the corresponding
outputs of the feature extractor in the target channel are
relatively large. The reverse holds for the presentation of
an image representing class We may therefore state
that the feature extractor in the noise channel is adaptively
matched to input data known to consist of noise alone.
A similar statement holds for the feature extractor in the
target channel. Both feature extractors are designed using a
self-organized learning procedure that tracks the statistical
variations in the received signal.

Turning next to the pattern classifiers and linear com-
biner, they are designed by using a supervised learning
procedure. To do this, we may use one of two procedures.

1) The two pattern classifiers are trained separately, with
hard decisions being made at their respective outputs.
When the machine is presented with a received signal
known to consist of noise only, the pattern classifier
in the noise channel is trained to classify that signal,
for example, as belonging to one of the following
three categories:

a) the received signal is definitely noise;
b) the received signal is on the border line of

being interpreted as noise or a weak target
signal plus noise;

c) The received signal looks like a weak target
signal plus noise.

Correspondingly, when the machine is presented with
a received signal known to consist of target signal
plus noise, the pattern classifier in the target channel
is trained to classify that signal as belonging to one
of the following three categories:

a) the received signal contains a strong target
signal;

b) the received signal contains a weak target sig-
nal;

c) the received signal looks like noise.

The outputs of the two channels are linearly combined
to produce the overall output where the final deci-
sion (in favor of hypothesis or is made. To
design the linear combiner, the machine goes through
another round of supervised training with data not
seen before. The categorization of the noise/target
channel output in the manner described here may be
viewed as a discrete approximation to soft-decision
making.

2) The two pattern classifiers and linear combiner are
all trained simultaneously. The individual outputs of
the two pattern classifiers (three each, for example)
are now free to assume values set by the activation
functions of their output neurons (processing units).

The attractive feature of method 1) is that the decision
boundaries between the different subclasses of the received
signal are well defined at the outputs of the two channels.
However this advantage, if any, over method 2) is gained
at the expense of increased training.

Irrespective of whichever of these two methods is
adapted, the adaptive two-channel receiver of Fig. 4 relies
on the use of learning-to-learn procedures for its design.
Most importantly, the target and noise channels tend to
reinforce each other in their individual decisions, thereby
providing for an improved detection performance over that
attainable with a single channel. To that end, the use of
linearly combining the outputs of the two channels, viewed
as a form of ensemble averaging, is usually considered to
be superior to the use of majority voting [45].

A. How Does the Adaptive Receiver of Fig. 4
Respond to a Nonstationary Environment?

An issue that may need further clarification is how the
adaptive receiver of Fig. 4 is able to respond to statistical
variations in the environment. The answer to this fundamen-
tal issue lies in: 1) the transformation of a time series into an
image or images; 2) the adaptive subspace decompositions
of the images so computed; and 3) the training of the pattern
classifiers under the tutelage of a “teacher.”

The time series-to-image transformers enhance the non-
stationary character of the received signal, making it more
visually discernible and therefore more readily learnable.
In this context, it is noteworthy to recognize that the
sonar-based echolocation system of a bat relies on the
computation of time-frequency maps for its own operation
[46], [47]. Indeed, a bat is able to detect and track its
prey (e.g., a flying insect) in a difficult environment with a
facility and success rate that would be the envy of a sonar
and radar engineer.

The adaptive subspace decompositions performed on the
time-frequency images (maps) provide for compact repre-
sentations of a wide variety of different realizations of the
two classes of data, that is, under hypothesesand
This is done by transforming the higher dimensional spaces
of the images to lower dimensional spaces, subject to the
constraint of information preservation (i.e., reconstruction
of the original data with minimal distortion). Moreover, the
features constituting the compact representations are decor-
related, thereby paving the way for the efficient training of
the pattern classifiers.

Finally, it is in the design of the pattern classifiers where
the accounting for nonstationary behavior of the environ-
ment comes into focus. Ground-truthed data pertaining to
hypotheses and are presented alternately to the
receiver, and the free parameters of the pattern classifiers
are adjusted so as to minimize a statistical criterion of
interest. By “ground truthing” we mean that when the
data are collected, the prevalent environmental conditions
(i.e., the target is present or not) are carefully monitored
and recorded by human observers. In the course of this
supervised training, information contained in the input data
is transferred and stored in the values assigned to the free
parameters of the subspace decomposers and pattern classi-
fiers. The net result of the training process is that a nonlinear
decision boundary is constructed in the input space between
the hypotheses and with the data having a direct say
in how the decision boundary is adaptively constructed. On
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the one side of the decision boundary we have data points
assigned to hypothesis each such point represents a
different realization of this hypothesis knowing that no
target is present, with the difference arising because of
statistical variations in the environment. On the other side of
the boundary we have data points assigned to the hypothesis

each such data point represents a different realization
of this second hypothesis knowing that a target is present,
with the difference again being due to statistical variations
in the environment. Subject to the proviso that the training
data are representative of the nonstationary environment,
and the pattern classifiers are therefore forced to assign the
data points appropriately to class or class under
the tutelage of a teacher, the receiver should achieve a
performance under test that is close to the performance
under training. It is assumed here that the test data are
different from the training data but drawn from the same
environment. Indeed, we can make the following general
observation [45]: the more exhaustive the training data set
is in its representation of the nonstationary environment, the
more likely it is that the receiver adapts to its environment
fully and therefore be able to exhibit a robust detection
performance.

The receiver design described herein differs markedly
from the way in which classical receivers are designed.
In the classical approach, we start with a mathematical
model of the received signal and end up testing the receiver
performance with real-life data. The success of the classical
approach rests largely on how close the mathematical model
is to the realities of the data. On the other hand, in
the adaptive approach through learning described in this
paper, the data set is allowed to “speak for itself” in how
the receiver is designed. Stated in yet another way, the
classical approach relies on mathematical tractability, and
the challenge in this approach is to formulate the right
mathematical model for the received signal that accounts
for the nonstationary behavior of the environment. In the
adaptive approach through learning, the need for mathe-
matical modeling is eliminated, and the challenge in this
modern approach is twofold: 1) collect a ground-truthed
database that is large enough in size and fully representative
of the nonstationary environment and 2) design the receiver
using appropriate learning-to-learn procedures that respond
to statistical variations of the environment.

VII. CASE STUDY: RADAR TARGET DETECTION

OF A SMALL TARGET IN SEA CLUTTER

The adaptive two-channel receiver of Fig. 4 defies a sta-
tistical analysis of detection performance along traditional
lines due to its nonlinear nature. Therefore, to evaluate
the practical merit of this new receiver, we performed a
case study involving the detection of a growler floating in
an ocean environment. A growler is a small piece of ice
that is broken off an iceberg. The above-surface visible
portion of it is about the size of a grand piano (i.e., a
radar cross-section of about 1 m However, recognizing
that about 90% of the volume of ice lies below the water

surface, a growler represents an object large enough to
be hazardous to navigation in ice-infested waters, such as
those encountered on the East Coast of Canada during the
Spring and early Summer. The radar task at hand is that of
detecting the radar echo from a growler in the presence of
interference represented by sea clutter.

For the collection of radar data representative of this
environment, an instrument-quality radar system called the
IPIX radar was used. The IPIX radar [48] is a fully coherent,
polarimetric, X-band radar system equipped with computer
control and digital data acquisition capability. The present
study is confined to the use of coherent data collected
under the polarimetric condition of horizontal transmit
and horizontal receive only. The radar was operating in
a staring mode (i.e., pointing onto a patch of the ocean
surface). A series of experiments using the IPIX radar was
performed at a site located on the East Coast of Canada.
The radar was mounted at a height above sea level that
would be representative of a ship-mounted radar. Ground-
truthing of the data collected was maintained throughout
the experiments, thereby providing knowledge of the con-
ditions under which the various datasets were collected.
This case study was chosen for the application at hand
because both the target of interest (a growler) and the
background interference (sea clutter) are known to exhibit
nonstationarity, which would require the use of adaptivity.
Moreover, the generation of sea clutter is governed by a
nonlinear dynamical process, which would therefore require
the use of nonlinear processing. Thus, the detection of a
growler in sea clutter provides a suitable medium for testing
the capabilities of our new detection strategy. Details of this
case study were presented in [17]. The material presented
here is a summary of the results presented in that paper.

A. Details of the Receiver

The 2-D WVD image used in the study had a time
dimension with spacing ms, and a
frequency dimension with spacing Hz.
Note that the WVD image is real valued even though the
received signal is complex valued.

Each of the two PCA networks in Fig. 4 consisted of
a feedforward NN with an input layer of
source nodes (fed from the WVD image of the received
signal) and a single computation layer of linear
neurons. Both networks were fully connected, in that each
neuron of either network was connected to all the source
nodes of its respective input layer. The total number of
connections/independent weights for each PCA network
was 1280. The training set for PCA network was made
up of epochs, representing hypothesis The
training set for PCA network was made up of
epochs, representing hypothesis The individual epochs
of WVD images were generated using examples of the
received signal, each being made up of 256 samples. Both
PCA networks were trained using the generalized Hebbian
algorithm (GHA) due to Sanger [49]. Let denote the
input vector applied to the algorithm at iteration (time step)

denote the corresponding value of output vector, and
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denote the weight matrix of the PCA network under
training. The change in the weight matrix computed
by the algorithm at iteration is defined by

(30)

where the superscript denotes matrix transposition, the
operator makes the matrix enclosed inside the square
brackets lower triangular by setting all the elements above
its diagonal equal to zero, and the scaling factordenotes
the learning rate parameter of the algorithm. The GHA
operates on the WVD directly. Most importantly, it is well
suited for the application at hand by virtue of the large size
of the training data and the ability of the algorithm to track
changes in the input data from one epoch to the next.

Turning next to the pattern classifiers in Fig. 4, we used a
type of feedforward NN’s known as multilayer perceptrons
(MLP’s). The input layer of each MLP consisted of an array
of source nodes fed from a compressed image with

and . The first hidden layer consisted of
an array of 5 15 neurons. The network architecture of this
layer was constrained as shown in Fig. 5. Specifically, it
incorporated the following concepts for improved training
and perhaps better generalization performance [13], [45].

1) Receptive Field: This means that a neuron in each row
of the first hidden layer is connected only to a certain
number of source nodes (denoted bythat lie in its
local neighborhood in the corresponding row of the
input layer.

2) Overlap of Receptive Fields: This means that the
receptive fields of adjacent neurons in a particular
row overlap by a certain number of source nodes
(denoted by

3) Weight Sharing: This means that the receptive fields
of all the neurons in a particular row share the same
set of synaptic weights.

For our present study we chose and .
In addition, each MLP had a second hidden layer of 25
neurons and output layer of three neurons, both of which
were fully connected. The neurons in both MLP’s were all
nonlinear, using a sigmoid activation function defined by
the logistic function

(31)

where is the induced local field of the neuron. The
induced local field includes a threshold (negative of bias),
which is represented by an adjustable weight connected to
an input fixed at 1. A total of 10 156 examples of the
received signal were used to do the supervised training of
the MLP’s. They were made up as follows:
examples representing hypothesis and
examples representing hypothesis Each example of the
received signal was 256 samples long. This training dataset
was completely different from that used to train the PCA
networks. The two MLP’s and linear combiner were treated
as a single entity and trained using the back-propagation

(BP) algorithm [45], [50]. The BP algorithm operates in two
phases. In Phase I, called the forward phase, the synaptic
weights of the network are fixed. In this phase the signal
applied to the input layer propagates through the network
in a forward manner, layer by layer. Phase I is completed
by calculating the error signals, defined as the difference
between the elements of the desired response vector and
the corresponding values of the actual output signals of
the neurons in the output layer. The error signals are
propagated through the network in the backward direction
in Phase II, called the backward phase. In particular, they
are used in a generalized delta rule (i.e., generalization of
the popular least mean square (LMS) algorithm) to compute
the adjustments applied to the individual synaptic weights
of the multilayer perceptron. The BP algorithm has two
useful properties:

1) simplicity of implementation;
2) stochastic gradients (i.e., derivatives of the error

performance surface with respect to the weights in
the network).

It is because of these two properties that the BP algorithm
has established itself as the workhorse for the training
of MLP’s intended particularly for pattern classification,
hence its use for the design of the pattern classifiers in the
two-channel receiver of Fig. 4.

B. Detection Results

Fig. 6 presents a visual display of the predetection per-
formances of two different receivers.

1) Doppler constant false-alarm rate (CFAR) receiver;
this system was chosen as a frame of reference
because of its widespread use as a conventional radar
receiver.

2) NN implementation of the two channel receiver of
Fig. 4, which involved the use of three output nodes
per channel.

Predetection refers to the receiver output prior to threshold-
ing. The results of Fig. 6 were obtained for a long dwell
time (approximately 35 s) along a range swath of 200 m
and a range gate (resolution) of 5 m; the total number of
radar samples represented here is 2.6810 The test data
used here were completely different from the data used to
train the PCA networks and those used to train the MLP’s.
The darkness of the display in Fig. 6 is a measure of the
actual power of the receiver output before thresholding. The
two parts of the figure have been normalized separately to
remove any bias introduced by changes in dynamic ranges
of the receivers. The Doppler CFAR and NN receivers paint
the two hypotheses and in dramatically different
colors. In particular, the discrimination between the clutter
background (hypothesis and target (hypothesis is
far more pronounced in the NN receiver than it is in the
Doppler CFAR receiver. This is a direct result of the fact
that the Doppler CFAR receiver is basically linear, whereas
the NN receiver is highly nonlinear thereby capturing the
information content of the received signal to a fuller extent.
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(a)

(b)

(c)

Fig. 5. Architectural details of each MLP. (a) 2-D display of first hidden layer; threshold is the
negative of bias. (b) First row of neurons in the first hidden layer. (c) Connectivity of each MLP.

To further emphasize the performance difference between
these two receivers, Fig. 7 shows their postdetection per-
formances obtained by comparing the amplitude of each
receiver output against a threshold. The threshold was set
for a false alarm rate of 10 that is, the probability that
a target is present in the received signal when actually it
is not was prescribed not to exceed 10This false alarm

rate is considered typical for the operation of a surveillance
radar. The color black in Fig. 7 signifies the presence of the
growler (hypothesis ), and white signifies its absence
(hypothesis ). With the radar operating in a dwelling
mode, the growler should ideally be visible to the radar
all of the time, that is, we should ideally see a continuous
black strip extending all along the time axis. With this ideal
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Fig. 6. Predetection statistics for the Doppler CFAR and NN
receivers.

picture in mind, we see a remarkable improvement in the
behavior of the NN receiver in that it fills in the periods
of “silence” frequently seen in the detection performance
of the conventional Doppler CFAR receiver. This so-called
silence is obviously caused by the partial obstruction of
the growler (target) by an ocean wave in front of it or
the dipping of the growler in a trough. The detection

Fig. 7. Postdetection results for the Doppler CFAR and NN
receivers.

performance displayed in Fig. 7 is indeed quite remarkable.
It shows that the NN receiver is able to perform well,
even in a situation when the radar returns from the growler
are weak. In other words, a “barely visible target is made
visible in signal processing terms.” The other important
observation is the occasional blanking of a signal from the
growler (as seen, for example, in the middle of the plot);
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in such cases, there is no way any method would be able
to detect the target since insofar as the radar is concerned,
the target is just not there to be seen.

To describe the detection performance of the receiver
of Fig. 4 in traditional quantitative terms, we used a test
dataset consisting of a total of 32 292 examples with
each example consisting of 256 radar samples, which (as
mentioned previously) were completely different from the
data used to train the PCA networks and those used to train
the MLP’s. The results of the tests may be summarized as
follows.

1) For a probability of false alarm the NN
receiver outperformed the Doppler CFAR receiver.

2) For the probability of detection (PD)
for the two receivers was as follows:

for the NN receiver
for the Doppler CFAR receiver.

C. Robustness of the Detector

Table 2 tabulates some relevant radar and environmental
parameters in the database that was used for the study. The
database was made up of four training datasets and nine test
datasets. The test datasets had not been previously seen by
the receiver, either for self-organized training of the PCA
networks or for supervised training of the MLP classifiers.
Although the training datasets corresponded to more or less
similar environmental conditions, the point to note from this
table is that the significant wave height is approximately
1.5 m. However, the test datasets pertained to wave heights
varying from 1.5 m–2.6 m. Since the growler protrudes only
about 1 m above the water line, the differences in wave
heights are significant. Table 2 thus clearly points to the
robustness of the NN-based receiver. The robust behavior
of the modular detection strategy is attributed directly to
the adaptive nature of the receiver, which results from the
combined use of self-organized learning and supervised
learning for its design.

VIII. C OST FUNCTIONS FOR SUPERVISED

TRAINING OF THE PATTERN CLASSIFIERS

In the case study on radar detection described in
Section VII, we used MLP’s for the pattern classifiers
in the adaptive receiver of Fig. 4. The MLP’s were
trained using the BP algorithm. In its traditional form,
this algorithm relies on the minimum mean-square error as
the optimization criterion. However, the standard criterion
for radar detection is the Neyman–Pearson criterion
[51]. According to this latter criterion, the probability
of detection is maximized subject to a prescribed upper
bound imposed on the probability of false alarm [1]–[3].
Unfortunately, minimization of the mean-square error does
not guarantee fulfillment of the Neyman–Pearson criterion.

Recognizing that the basic idea of the Neyman–Pearson
criterion is to treat the two kinds of error (i.e., missed de-
tection and false alarm) differently, Principeet al. [52] have
proposed a mixed-norm formulation of the cost functions

Table 2

as follows:

(32)

where is the desired response, is the number of noise-
only samples (i.e., hypothesis is true), and is the
number of target-plus-noise samples (i.e., hypothesisis
true); and are the norms for hypotheses and
respectively; and are the corresponding classes of
data; is the receiver output in response to the
received signal parameterized by the weight vector
representing the two pattern classifiers and linear combiner.
In order to mimic the Neyman–Pearson criterion with the
mixed-norm cost function of (32), two requirements have
to be satisfied.

1) Given that hypothesis is true, the largest deviation
of the output from the desired response
should be minimized so as to set the threshold at the
receiver output to as high a level as possible.

2) Given that hypothesis is true, the influence of
large errors should be de-emphasized so that as few of
the corresponding output samples exceed the thresh-
old.

These two objectives can be achieved by using the
norm (i.e., for the training examples for which
hypothesis is true, and the norm (i.e., or
even fractional norms for the training examples for which
hypothesis is true. In Principeet al. [52], the necessary
modifications to the BP algorithm to work with the cost
function of (32) are described.
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By training the MLP’s in the manner described here, we
may expect a further improvement in the performance of
the adaptive receiver applied to the radar detection problem
discussed in Section VII.

IX. SUMMARY AND DISCUSSION

In this paper we have described an adaptive receiver,
based on learning, for the detection of a target signal buried
in a nonstationary background of unknown statistics. In a
fundamental sense the receiver relies on three functional
blocks:

1) the transformation of a one-dimensional received sig-
nal into 2-D images (maps), whereby the role of time
(an essential dimension of learning) is highlighted and
the time evolution of the frequency content of the
received signal therefore made clearly visible, that is,
the received signal is preprocessed such that the target
signal and noise components are separated to the best
advantage in the “extracted feature space”;

2) subspace decomposition for the purpose of dimen-
sionality reduction and therefore efficient learning;

3) pattern classification to pave the way for reliable
decision making.

The learning process is self organized in performing the
subspace decomposition and supervised in performing the
pattern classification. The receiver may therefore be suc-
cinctly described as an adaptive detection system based on
learning.

The approach taken here is radically different from the
classical approach to receiver design. In particular, the
need for mathematical modeling of the received signal
is eliminated. Instead, successful design of the receiver
rests on the availability of a sufficient number of real-life
examples representative of the nonstationary environment
in which the receiver operates. Part of this database is used
to train the receiver, and the remaining part is used to test its
performance. The training set is itself split into two parts,
one part devoted to design the subspace decomposers and
the other part devoted to design the pattern classifiers. Ac-
cordingly, the free parameters of the receiver are adjusted in
a systematic fashion whereby the information contained in
the examples about the environment is extracted and stored
in the receiver as parameter values.

In summary, the main virtue of the adaptive two-channel
receiver described in this paper is the ability to learn a
complex input–output mapping of the environment through
a training session. For this learning to be effective, we must
have a set of examples representative of the environment:
the more representative the examples are, the more robust
will the behavior of the receiver be with respect to statistical
variations of the environment.
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