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Abstract--A polarimetric radar navigation system makes use o f  polarization rotating twist-grid retroreflectors in 
order to navigate a confined waterway, even in inclement weather or after dark. Despite the polarization diversity 
offered by such a radar target, depolarization allows significant cross-polar clutter to obscure the reflector return. 

A novel modular neural network solution integrates an adaptive crass-polar interference canceller, a radial basis 
function network, and a conventional cell-averaging CFAR processor to successfully demonstrate the enhancement 
and detection o f  a polarization target. The modular solution outperforms any one o f  the aforementioned methods on 
their own. This is indicated subjectively through the display o f  the resultant processed images, and objectively by the 
estimates o f  target-to-clutter ratio and receiver operating curves. 

A post-detection processor uses a priori information about the reflector location along the water-land boundary o f  
the waterway. A fuzzy  processor combines primary detection information with the output from a vision-based edge 
detector to effectively remove false alarms. 
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1. I N T R O D U C T I O N  

1.1. Precise Navigation Problem 

Inland confined waterways, such as St. Lawrence 
seaway and the Mississippi River, are of  great 
importance in the transportation of  goods by ship. 
The shipping community strongly desires to make 
best use of  this resource. However, some factors exist 
that limit the time that the waterways may be used. 
During periods of  low visibility, namely fog, heavy 
rain, or darkness, the ships cannot  navigate by visual 
aids. The buoys which are used as visual aids in 
navigation are deployed at the beginning of  the 
shipping season, and removed at the end of  the 
season. To extend the season beyond the times when 
buoys are available, and to travel in times of  poor  
visibility, another navigational aid is needed to 
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supplant, or replace, that of  visual nagivation by 
the ship's pilot. It goes without saying that such a 
system must be robust and provide an accuracy of  
navigation comparable to that of  the ship's pilot. It 
was judged that a ship's pilot could navigate visually 
within an accuracy of approximately 4-3 m from the 
channel centerline and 4-7 m from the channel limits. 

The use of  a marine radar system was investigated 
as a means by which radar ranging to known targets 
could be used for triangulation to locate a ship within 
a waterway. The discriminants that are available to 
the radar systems designer for the identification of  
stationary targets are power, frequency, and polar- 
ization. In the context of  noncoherent radar, 
polarimetric diversity is the only viable option. The 
polarization of  an electromagnetic wave is defined as 
the direction of  the electric field component.  Most 
marine radars transmit with the electric field linearly 
polarized in the horizontal plane. A passive reflector 
target which is able to rotate the plane of  polarization 
efficently is obviously needed. It is known that a 
dihedral reflector mounted on a 45 ° angle from the 
horizontal has the desirable property of  rotating a 
linearly polarized field through 90 ° efficiently. Early 
studies showed that the dihedral exhibited the 
polarimetric characteristics that could be exploited 
in navigation. Unfortunately, the dihedral only 
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exhibits its polarization rotating property over a very 
narrow azimuthal angle. Further investigations of 
reflector design resulted in the invention of the 
trihedral twist-grid reflector, which has the same 
polarization characteristics as the dihedral as well as 
a wide azimuthal response (Macikunas et al., 1988). 
Using the reflector in field experiments verified its 
desirable performance characteristics. 

The novel polarimetric radar for accurate naviga- 
tion (PRAN) system was thus invented at the 
Communications Research Laboratory, McMaster 
University. The system consists of a set of  polariza- 
tion-twisting reflectors situated along a confined 
waterway in known locations so that a ship with 
the proper radar equipment can ascertain its position 
with respect to the shoreline. Figure 1 shows a 
possible deployment of the system along a confined 
waterway. The interested reader is referred to Haykin 
(1992) which gives a complete historical perspective 
on the development of  the PRAN system. The 
following summarizing the important properties of 
a trihedral twist-grid reflector: 

• passive device; 
• efficient rotation of polarization; 
• high cross-polar radar cross-section; 
• wide azimuthal angular response; 

• low cost and simple construction; 
• insensitive to alignment errors; 
• robust. 

Limitations in the marine radar system compo- 
nents, as well as multipath and the natural 
depolarization characteristics of the environment 
increase the clutter in the received radar returns and 
make the reflectors less visible than is desirable. 
Rather than using impractically large reflectors, or 
performing expensive upgrades to the radar system, 
the solution pursued herein involves processing the 
horizontally and vertically polarized returns jointly in 
some optimum fashion to increase the target-to- 
clutter ratio. 

1.2. Signal Processing Solution 

The phenomenon which causes a received wave to 
have a different polarization from the transmitted 
wave is called depolarization. The radar environment 
generally consists of  targets, land clutter, and sea 
clutter whose back-scatter has different polarization 
properties. For example, an object may consist of 
various asymmetric objects with partially conductive 
surfaces, and this can cause depolarization of the 
incident wave. Diffuse scattering is the main cause for 

FIGURE 1. An artist's depiction of the polarlmetrlc radar navigation system in operation. 
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depolarization in land and sea clutter, although man- 
made objects can cause small regions to have 
significant depolarization values. Due to the physical 
non-homogenous nature of various clutter regions, 
we therefore expect the depolarization values to vary 
over some range. Cross-polar returns for land clutter 
are quoted to be typically in the range of 3-10 dB less 
than the corresponding co-polar returns for linearly 
polarized X-band radar (Giuli, 1986). The corre- 
sponding range for sea clutter is 6-10 dB. For the 
problem at hand, the radar transmits only H-pol 
signals, and receives both H-pol and V-pol scattered 
energy non-coherently. In general, the clutter can be 
characterized as having a non-stationary and non- 
Gaussian joint probability density function. The 
signal processing solution must therefore address 
this important fact. 

There is a priori information that an engineer can 
use to improve the visibility and hence the detection of 
the target. The targets are cooperative targets, and the 
location of the targets is controlled by the installers of 
the system. The placement of the reflector adjacent to 
a stationary undesirable point target with a large 
cross-polar response can therefore be avoided. The 
path from the ship's radar antenna to the reflector 
target must also be unobscured by natural objects 
(e.g., trees) or artificial objects (e.g., metal towers). 
The preferred location for these targets is therefore 
near the boundary between land and water. 

Figure 2 is a block diagram of the radar signal 
processing system and the detection system. The 
radar signal processor accepts digitized radar video 
data from a dual-polarized scanning marine radar 
transceiver. The magnetron of the marine radar 
transmitter produces a narrow pulse (50 ns) of X- 
band signal at a regular rate determined by the pulse 
repetition interval (PRI=294 ms). The parabolic 
antenna transmits the energy in a horizontal, linearly 
polarized fashion. The same antenna receives 

reflected signals in both linear horizontal and 
vertical polarized planes. The radar receiver section 
has two logarithmic-response non-coherent sections 
that produce video sweeps from the received 
electromagnetic signal at each PRI interval for both 
horizontal (H) and vertical (V) polarizations. The 
rotational motion (28 rpm) of the scanning antenna 
results in video returns at regular azimuthal look 
directions, which map out a polar-coordinate image 
of the area surrounding the radar system. This video 
is normally presented to the operator on a plan 
position indicator (PPI) display. In an operational 
system, the operator could also choose to view the 
processed signal as well. The digitized video samples 
XHH(n) and XHv(n) are obtained from the dual- 
channel analog-to-digital (A/D) sampling system 
(30 MHz sampling rate, 8-bit quantization). 

The samples are sent to the radar signal processing 
system, which processes HH-pol and HV-pol data in 
an optimum fashion. The radar signal processing 
system is a modular system, which makes use of 
adaptive and non-linear elements to address the non- 
stationary and non-Gaussian nature of the inhomo- 
geneous clutter environment. One element of the 
signal processor is an adaptive cross-polar inter- 
ference canceller, designed to cope with varying 
clutter regions. Another element is the mutual 
information network implemented using a radial 
basis function (RBF) network; it is trained using a 
mutual information principle in order to capture the 
non-Gaussian nature of the clutter. The outputs of 
these two elements are then combined together with 
the objective of maximum information preservation. 

For automatic detection processing, the resultant 
image is passed to a conventional cell averaging- 
constant false alarm rate (CA-CFAR) processor. The 
enhanced image so produced (prior to thresholding) 
has the property of a constant false alarm rate. The 
thresholding stage maps the multivalued discrete 
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image to a binary image, labeled bi in Figure 2. The 
threshold /3 applied to the detection system 
determines the false alarm rate. 

Finally, a post-detection processor uses a priori 
information about the waterway to remove false 
targets. Modern image processing techniques based 
on human vision are used to determine the land-  
water boundary. The post-detection processor uses 
fuzzy reasoning to only accept detections that occur 
in and around such a boundary, and to reject all 
other detections as false alarms. The final detected 
outut, eli, contains the desired reflector locations. 

Throughout  the development of  the processing 
stages, an effort was made to consider solutions that 
are implementable in analog neural network archi- 
tectures. Only simple elements need to be considered 
for use in the neural architecture, namely: delays, 
weights (both fixed and adaptive), multipliers, 
integrators, summers, threshold units, and Gaussian 
response units. Using these basic elements, structures 
such as adaptive filters, automatic gain controls, and 
fuzzy logic functions can be constructed. 

2. M O D U L A R  N E U R A L  N E T W O R K  

A non-learning method is defined as a method that 
uses information other than that contained in the 
training samples (Hrycej, 1992). A non-learning 
modular neural network is defined as a super- 
structure that integrates trained neural sub-networks 
in a useful fashion, using a non-learning method. A 
non-learning modular neural network has the ability 
to integrate the desirable qualities of two learning- 
based networks to produce a result that is better than 
either network used on its own. As an additional 
benefit, the modular network should also be more 
robust in operation, since the network could continue 
to function even if there was a complete failure of one 
of  the network sub-modules. 

For  a modular network to perform better than its 
parts, each sub-network must provide some indepen- 
dent information. Two signal processing methods are 
chosen which meet this criterion, the first is an 
adaptive cross-polar interference canceller (ACPIC); 
and the second, a mutual information-based network 
is trained to minimize the mutual information 
between its two outputs. This results in one output 
containing the dependent component of  the data, and 
the other output containing the independent compo- 
nent of the data. This network is implemented in a 
radial basis function (RBF) network architecture, 
and is trained using unsupervised learning methodol- 
ogies. Judging from a subjective inspection of the two 
radar images produced by these two methods, and 
from their operation, it is hypothesized that 
combining these methods should capture the desir- 
able characteristics of both networks. 

2.1. ACPIC Network 

First, we investigate an adaptive signal processing 
methodology that can account for the non-stationary 
nature of  the clutter process. The ACPIC is a linear 
network, capable of  adapting to the cross-polar 
variations in the clutter environment. 

The clutter statistics vary depending on whether it 
is sea clutter, various forms of  land clutter, or strong 
point targets. For  the purposes of  this study, two 
typical areas were identified. One, called here the 
DOFASCO site (located by permission on the 
DOFASCO Company property), is in an industrial 
area. The target reflector is in an area that has many 
large metal buildings and machinery. The other site, 
called here the La Salle Park site (located by 
permission in La SaUe Park conservation area), is a 
more benign area with park land and some residential 
land. 

The signal processor is designed to track the 
statistical variations in clutter, removing that portion 
of  the HH-pol return that is correlated with the HV- 
pol return. It operates by processing along each radar 
range sweep for each azimuth sampling of the 
scanning antenna, adapting in real-time to the 
changing polarization conditions of  the radar 
clutter. The processing is independent from sweep 
to sweep, and therefore does not take advantage of  
correlations that may exist in the azimuthal direction. 
The result is an enhanced cross-polar target response. 
However, to be successful, the adaptive canceller 
must be tuned to the nature of  the reflector, and must 
operate in a robust fashion. 

2.1.1. Principle of  Adaptive Interference Cancella- 
tion. A schematic diagram of  the single-tap adaptive 
interference canceller is shown in Figure 3. The input 
is the sampled range series (or equivalently, time 
series) for a particular azimuth look direction. The 
canceller processes the HH-pol and HV-pol radar 
returns along the range dimension, as they are 
received, on a sweep-by-sweep basis, removing a 
weighted version of the HH-pol return (interference 
signal) from the HV-pol return (desired signal). 

xHv(n) > 

XHH(n) > 

J ADAPTATION t -I ALGORITHM 

~ ,  > eHv(n) 

FIGURE 3. Discrete-time cross-polar interference canceller. 



Enhancement o f  Cross-polar Radar Targets 147 

Various adaptive algorithms have been developed to 
adjust the tap weight in some kind of  optimal 
fashion; however, we only consider the least-mean 
squares (LMS) adaptive algorithm here. For  a 
detailed discussion of  the operation of  adaptive 
filtering algorithms and noise cancellation, the 
reader is referred to Widrow (1975), Widrow and 
Stearns, (1985) and Haykin (1991). 

From Wiener filter theory, it is known that the 
optimum tap-weight solution under conditions of 
stationarity and a zero-mean Gaussian process is 

R ....... (0) (1) 
W ° p t - - R  . . . . . . .  (0 ) '  

where Rx..,x.v(O) is the zero-lag cross-correlation 
between the two channels, and Rx.., x.. (0) is the zero- 
lag autocorrelation of  the HH-pol channel. When the 
statistics of the time series are stationary, the adaptive 
algorithm solution for the weight will approach this 
opt imum value. 

T 
r = In(1 -- a2~kMSX,) (5) 

where "r is the time constant for a decaying 
exponential, and T is the sample period. 

Since the twist-grid reflector can be simplistically 
interpreted as causing a step-change in the cross- 
polar radar sweep, we can use this result to choose a 
reasonable r for the adaptive cross-polar clutter 
canceller. The pulse width of  the radar transmitter 
fundamentally determines the length, or response 
duration of a point target. A good choice for "r would 
be to allow the speed of  adaptation to be as high as 
possible, but long enough so that the reflector 
response is not affected. Choosing a time constant 
that is too fast would cause the filter to start adapting 
to the reflector, and degrade the target-to-clutter ratio 
on the output. Choosing a time constant that is too 
long would impede the ability of  the filter to adapt to 
changing clutter conditions and allow more clutter 
than necessary in the output.  

2.1.2. The L M S  Algorithm. The desired response in 
the following equations is set to be the HV-pol range 
sweep, and the disturbance to be the H H-pol range 
sweep, as shown by the block diagram in Figure 3. 
The LMS update equations for the one-tap weight 
case are therefore 

'ZHV(n) =XHv(n)--~(n)XsH(n), n = O , . . . , N -  1, (2) 

i f (n+ 1) =~(n)+#LMSXH.(n)OHV(n), W(0) =0 ,  (3) 

where #Hv(n) is the estimated aposteriori error at time 
n, XHv(n) is the signal containing the desired response, 
XHH (n) is the interference that is correlated to XHv(n), 
~, (n) is the estimated tap weight, #LMS is the step-size 
parameter,  and N is the total number of  samples. The 
weight update algorithm is stable for #LMS in the 
range 

2 
0 < #LMS < cr-'Y-' (4) 

XHH 

where o-2~H" is the variance of the input XHH (n). 

2.2. Mutual Information Network 

Gilbert stated that, " Informat ion will be a measure of 
time or cost of  a sort which is of  particular use to the 
engineer in his role of  designer of  an experiment" 
(Gilbert, 1958). Here, the statistical measures of  
information theory are used as cost functions in the 
unsupervised learning of  neural networks. The desire 
is to process the HH-pol and HV-pol signals jointly 
such that the mutual information between the 
outputs is minimized, under the constraint that the 
output variance stays equal to that of the input. The 
expectation is that the cross-polar reflector target 
response energy should be maximized in one of  the 
outputs. 

2.2.1. Information-Theoretic Principles. A few defini- 
tions are presented first. The differential entropy of  a 
continuous random scalar variable X may be written 
as (Cover & Thomas, 1991) 

I L H(X) = s f ( X  ) log dx = - f (x )  logf(x)dx, 

(6) 

2.1.3. Transient Response. In the LMS algorithm, 
the step-size parameter/ZLMS determines the adaptive 
interference canceller transient performance in a non- 
stationary environment. By studying the impulse 
response behavior of  the LMS algorithm, a reason- 
able choice for /ZLMS can be made. Assuming that 
XH. (n) = a, a constant, for n = 0 , . . . ,  N - 1, it can be 
shown (Ukrainec, 1994) that 

where f ( x )  is the probability density function (p.d.f) 
and S is defined as the support  set, the set of values 
where f ( x ) >  O. The relative entropy, or as it is 
sometimes called, the Kullback-Leibler  distance, is 
defined as 

D(J~ H f2) = r | f i (x)  log (f,(x)'~ dx, (7) 
, \ f2(x)]  JS 
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where the support set Sl o f f t ( x )  must contain the 
support set o f f2 (x )  for the measure to be finite. The 
measure can be thought of  as an oriented measure of 
distance between two probability density functions. A 
special case exists when the relative entropy between 
the joint probabilty density function f x r ( x ,  y) and 
the product  of  its marginal respective probability 
density functions f x  (x) and f r  (y) is considered. The 
result is the mutual information between two random 
variables, that is, 

I(X; Y) = O(fxr(x,  y)Ilfx(x)fr(Y)) 

= [ [ fxr(X, y)log ( fx,(x, y) 
\fx(x)fr(y)} axa~ (8) J J 

Equivalently, in terms of  differential entropies, 

I(X; Y ) = H ( X ) - H ( X l Y ) = H ( Y ) - H ( Y I X ) ,  (9) 

where H(X)  is the differential entropy of  X, and 
H(X[  Y) is the conditional entropy of  X given y. The 
entropies H ( Y )  and H ( Y [ X )  are similarly defined. 
In communications theory the mutual information is 
often used to measure the information capacity 
between the input and output of a noisy, band- 
limited channel. 

The specific case of  Gaussian p.d.f, is now 
considered. The differential entropy of a zero-mean, 
multivariate Gaussian distribution is found to be 

1 log (2~re)dlRI, (10) HG(XI, X2,...,Xd) = Hc(X) = ~  

where R = E(XX r) is the autocorrelation matrix of  
dimension d x d, and IRI is the determinant of  R. 
This also gives the upper bound on the differential 
entropy of  continuous variables in that 

/-/(x) </-/o(x), (11) 

for a zero-mean X, given the same autocorrelation 
matrix (Cover and Thomas, 1991). Assuming that the 
joint distribution is a bivariate Gaussian p.d.f., the 
mutual information is found to be equal to 
(Kullback, 1968) 

1 
I(X; Y) = --~ log(1 - p~,y), (12) 

where px, y is the correlation coefficient between X 
and Y. It is defined in terms of  the pertinent 
correlation functions Rx, x(O)~ Ry, y(O) and Rxy(O) 
for zero lag as follows: 

Px, Y = Rx, y(O) . (13) 
X/Rx ,  x (0) ny,  y (0) 

In the Gaussian case, minimizing the mutual 
information is equivalent to driving the outputs to 
being statistically uncorrelated. 

Some properties that are useful for computing 
information-related quantities in network architec- 
tures are now presented. The mutual information is 
equal to 

I(X; Y) = O, (14) 

if and only if X is independent of  Y. The entropy of  a 
random variable remains unchanged after transla- 
tion, Y = X + k, so that 

t t (r )  = / - / (x  + k) =/-/(x).  (15) 

Under the linear matrix transformation Y = WX, the 
entropy change is such that 

H(Y) = H(WX = H(X) + log(IWl), (16) 

where I w l  is the determinant of matrix W. For  any 
continuous matrix transformation of  a multivariate 
random variable Y = F(X),  the entropy is equal to 
(Walker & Akers, 1992) 

H(Y) = H(X) - E[log(IJr (X) I)], (17) 

where Je (X) is the Jacobian of  the transformation. 

2.2.2. Unsupervised Learning of  Neural Networks. In 
the case of  a linear network ¥ = WX, finding the 
weight matrix that minimizes the mutual information 
at the outputs ¥ is equivalent to finding an 
orthogonal transformation to decorrelate the out- 
put. This solution for a linear network is easily 
obtained and implemented, and is optimum in the 
case when a Gaussian p.d.f, describes the data. To 
find the solution for a nonlinear network is much 
more difficult. However, the advantage is that the 
nonlinear network has more degrees of  freedom to 
find nonlinear mappings that satisfy the optimization 
conditions. 

2.2.3. Radial Basis Function Neural Network. Radial 
basis function (RBF) neural networks have been 
successfully used by several researchers to solve 
difficult problems in signal processing (Broomhead 
& Lowe, 1988; Casdagli, 1989; Jones et al., 1989; 
Lowe, 1989; Lowe & Webb, 1989; Moody & Darken, 
1989b; Saha & Keeler, 1990; Haykin & Ukrainec, 
1993). The RBF network architecture used here is 
presented in Figure 4. The inputs connect to a non- 
linear hidden layer. The hidden layer, in turn, is 
connected to the output by a linear layer. The hidden 
layer non-linear functions are of  a type called radially 
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XHH(n) 

XHV(n) 

YHH (n) 

YHV (n) 

# 
hidden layer 

FIGURE 4. The mutual Information (RBF) neural network 
architecture. 

symmetric basis functions. These functions can be 
chosen to be of many possible forms. Here only the 
Gaussian form will be used. The non-linear func- 
tionals in the hidden layer are given by 

~bj(x) : e -l/2(x-cj)rs~(x-cj) = e -I/211x-cAI2 (18) 

where x def (XHH, XHv) r, ~bj(x) is the j t h  radial basis 
function evaluated at the input vector x, cj is the j t h  
RBF center, and Sj is the j th  multidimensional width, 
or spread. The term following the factor -½ in the 
exponent is known as the Mahalanobis metric, or 
weighted Euclidean metric (hence the subscript M). 
The functional form of the RBF network is therefore 
given by 

NA 
Yi = E wyi~b7 (x) + Woi (19) 

y=l 

where Yi is the ith output function evaluated for the 
input vector x. The output can therefore be written as 
the vector y de=f (YHH, YHV) r. The parameter wji is the 
linear output weight connecting the j th  hidden unit 
with the ith output. The hidden layer has a total of 
Nh radial basis functions. The weight w0 is the bias 
term. Given a set of  input and output data vectors, 
{x(n), y(n) In -- 0,. . . ,  N - 1 } 

x(0) r 
X(1)T [ 

\ x ( N -  1 : /  
i[ ,~l(x(O)) 

~bl(X(1)) 
~- -  

~bt (x(N-  1)) 

~(x(O)) ~#,(x(l)) 

qSNh (xCN- l)) 

I WI,HH WI, HV '~ / Y(O) r '~ 

w =  i i 'Y= : " 
\W~h, HH WNh. HV/ \ y(N'-- 1) r ] 

Rewriting eqn 19 in matrix form, 

Y = @(X)W. (20) 

2.2.4. Network Design Strategies. The  determination 
of  the hidden layer parameters is a challenging task. 
Various procedures have been experimented with to 
learn the centers and widths (or spreads) of the 
hidden layer of  RBF units. 

Several non-adaptive strategies have been used to 
determine the RBF centers and spreads. The most 
straightforward choice for the location of  the centers 
is to place them on an evenly spaced grid, spanning 
the input space. Unfortunately, a very large number 
of  RBF units may be needed, since the number of 
units required grows exponentially with the dimen- 
sionality of the input space. As the dimensionality of 
the input grows, most of the input space becomes 
devoid of samples, and therefore a large percentage of 
the centers lie in an area where there are no data. 
Another more effective choice for the RBF centers is 
to set the centres equal to a random sampling of the 
input data. This strategy ensures that centers are 
located only in areas where there are data. It has been 
shown that as long as a sufficiently large number of 
centers are used, good prediction performance on a 
chaotic time series is achieved (Broomhead & Lowe, 
1988). In either case, the RBF spreads are chosen 
using some heuristic method. 

Supervised adaptation of the RBF centers, 
spreads, and output weights using optimization 
techniques have been used (Lowe, 1989; Moody & 
Darken, 1989b). This strategy can give a minimal 
RBF network configuration. Some of the disadvan- 
tages with using optimization techniques are con- 
siderable computational cost, poor scaling of learning 
as network complexity grows, and the presence of 
sub-optimal local minimum solutions. Low (1989) 
points out that the same final error performance can 
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be achieved with a network with a larger number of 
non-adaptive centers, with the same generalization 
performance. 

The investigations of hybridized unsupervised/ 
supervised training schemes have shown promise 
(Moody & Darken, 1989a, b; Nowlan, 1990b; Saha & 
Keeler, 1990). Some of the advantages are computa- 
tional efficiency, good scaling of learning as network 
size grows, and faster convergence. The hybrid 
procedure consists of two stages of learning: an 
unsupervised clustering algorithm is used to deter- 
mine the parameters of the hidden layer, followed by 
a supervised least-squares solution to the linear 
output weights. Moody and Darken (1989a, b) 
suggest the use of the k-means clustering algorithm 
to find suitable positions for the centers. As a result, a 
smaller number of RBF units are required. After 
clustering, heuristic methods are used to choose the 
spreads of the RBF units. The k-means algorithm is 
an approximate version of the maximum likelihood 
(ML) solution for determining the location of the 
means of a mixture density of component densities. 
The expectation maximization (EM) algorithm can 
be used to find the exact ML solution for the means 
and covariances of the density. A comparison of  these 
two learning strategies on a classification problem 
was done by Nowlan (1990a, b), with the EM 
algorithm shown to be superior. Saha and Keeler 
also studied the use of the k-means clustering for the 
adjustment of RBF centers, and suggested an 
approach which they termed as extended metric 
clustering (Saha & Keeler, 1990), where clustering is 
done in an augmented input-output space. Once 
learning is complete, the cluster locations are 
projected back onto the input space, and used as 
the RBF unit centers. In recent studies by Ukrainec 
and Haykin (1991b) and Haykin and Ukrainec (1993) 
the hybrid training was applied successfully to signal 
processing problems. It was shown that a combina- 
tion of EM training and extended metric clustering, 
named EMX clustering, gave the best overall 
performance in the example prediction and cancella- 
tion signal processing problems. 

The clustering concept is used here to learn the 
hidden layer RBF parameters. The EM learning is 
peformed in the two-dimensional input space 
[XHH , XHV ]. After the learning process is complete, 
the center and spread parameters are projected down 
onto the XHH and XHv axes. This results in a one- 
dimensional RBF hidden layer. The linear layer then 
combines the localized representations to provide the 
desired mapping. 

2.2.5. Unsupervised Clustering Algorithm. The ex- 
pectation maximization (EM) algorithm is a general 
approach for iteratively computing the maximum- 
likelihood (ML) estimates of parameters of mixture 

density problems. This algorithm has broad applica- 
tion for ML estimation from incomplete data 
(Dempster et al., 1977), mixture estimation (Redner 
& Walker, 1984), and unsupervised clustering 
(Duda & Hart, 1973). Here we will concentrate on 
the application of the EM algorithm for to learn 
the RBF centers and spreads through unsupervised 
clustering. 

A mixture distribution of Gaussian component 
densities is given by (Duda & Hart, 1973) 

Nh 
p(x(n) I O) : Z P(j)p(x(n)l  J, 0~), (21) 

j : l  

1 e -  l/2(x(n)-ixj )r~l(x(n)-tt:  ), 
p(x(n) [j, Oj) - (27r)d/2 [ E j 11/2 

(22) 

where 0 = (01,.. .  ,0uh) is the vector of parameters 
(means and covariances) to be estimated, d is the 
dimensionality of the multivariate Gaussian density, 
ixj is the mean, and ~2j is the covariance. The a priori 
probabilities P ( j )  are called the mixing parameters. 

The EM algorithm iteratively converges to a 
maximum of the likelihood function, yielding an 
estimate of the parameters of the component 
densities, as well as the mixing parameters P( j ) .  
Although the algorithm is guaranteed to converge, 
there is no guarantee that it will converge to a global 
maximum. The update equations are given as follows 
(Duda & Hart, 1973): 

1 ~ p(ilx(n) ' 0), 15( i )=~ , :0  (23) 

N - I  
/5(ilx(n), 0)x(n) 

i~ i = ,=0 (24) 
N - I  
Z /5(i[x(n)' 6) 
n=O 

N - I  
P ( i l x ( , , ) ,  0 ) ( x ( n )  - ~ , ) ( x ( n )  - p , ) T  

~] k=0  
N - I  
~ ]  /5(ilx(n), 6) 
k = 0  

(25) 

P(i)p(x(n) Ii, 6,) P(iix(n), 6) = N. 

P(j)p (x(,,)IJ, 6:) 
j=l 

(26) 

An additional step was added to these standard 
update equations to ensure that the algorithm learned 
localized representations. The step 
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if E~J > E~ / set the diagonal element E~ = E~ (27) 

ensures that the spread is limited to a maximum given 
by El. Without this extra step, the algorithm may 
converge to solutions where one or more of  the 
components of  the mixture distribution span a large 
area of  the sample space, overlapping other 
components. Although these are valid solutions, 
they are not desirable when the parameters are to 
be transferred to a RBF network that presupposes 
localized representations. 

The equations describe a batch processing 
algorithm, where all the data are used for each 
iteration. An on-line version of  the EM algorithm 
was suggested by Nowlan (1990a), where the density 
parameters can be continuously updated a new data 
become available. This may have application if the 
input space is slowly changing, and the representa- 
tions need to be fine tuned. For  the purposes of  this 
study, the batch update algorithm is used exclusively. 

It is evident that the RBF given in eqn (18) and the 
Gaussian component  density in eqn (22) have almost 
the same form. It is hypothesized that the individually 
learned I~j of  the component  densities should give a 
good location for the centers of the RBF units. 
Likewise, the estimated covariances can give the 
required spread of  the RBF units. 

The hybrid learning procedure is therefore given as 
follows: 

1. choose the number of  RBF units (and hence the 
number of  component  densities); 

2. initialize the density parameters; 
3. iterate the EM algorithm until convergence; 
4. transplant the estimated parameters of  the 

component  densities into the RBF units, so that 
ej *--- i~j, Sj ~ Ot~f 1, where 0 < a < 1 (discussed 
below); 

5. forward-propagate the input data to the output of  
the RBF hidden layer; 

6. compute solution to linear weight layer. 

The factor a is introduced to increase the spreads in 
order to smooth the interpolation performance of  the 
network. As shown by Ukrainec and Haykin (1991b), 
the performance increases as a is decreased, although 
localization of  response decreases. 

2.2.6. Minimum Mutual Information Learning. Once 
the basic functions are trained using the unsupervised 
method described in the previous section, they are 
fixed and only the output  layer of  weights would need 
to be learned. The objective is to minimize the mutual 
information between the outputs, while keeping the 
output entropy fixed. The cost function is therefore 

C(W) = I(YHH; YHV)+AIH(Y)-H(X)h (28) 

where YHH and YHV are random variables whose 
sample values are denoted by yHH(n) and YHV(n), 
respectively. The constraint term explicitly ensures 
that the output entropy is constant, and equal to the 
total input entropy. The advantage in using a 
nonlinear network over the linear network is in the 
increased degrees of  freedom in the mapping. The 
entropy of  the output of  the RBF network is found 
by combining the results of  (16) and (17) so that 

H(Y) = H(X) - E[log(IJR(X ) I)] + log(lW[), (29) 

where JR(X) is the Jacobian of  the hidden layer 
transformation. The RBF network has an advantage 
here over other neural networks, such as the 
multilayer perceptron, in the sense that it has a set 
of  fixed basis functions, or in other words, a non- 
adaptive hidden layer. 

The numerical estimation of  I (  YHH; YHv) requires 
either a priori assumed distribution model or a 
model-free estimate. A model-free estimate is 
possible but is computationally expensive [order N 
log N (Fraser & Swinney, 1986)], and must be 
recomputed on every iteration of  the optimization 
routine used to minimize the cost function. Previous 
researchers Becker and Hinton (1989) and Zemel and 
Hinton (1991) have used the Gaussian distribution 
model assumption when attempting to estimate 
mutual information. Preliminary studies done by 
Ukrainec and Haykin (1991a, 1992) have shown that 
it is possible to use the Gaussian-based mutual 
information measure given in (12) as an estimate of 
the mutual information. The advantage is that it is 
easy to compute. However, since the distribution is 
known to be non-Gaussian, it is also inaccurate. At 
best, this is an upper bound on the mutual 
information. The result in (11) indicates that for a 
given autocorrelation function, the differential 
entropy is upper bounded by the Gaussian distribu- 
tion. 

Using the Gaussian distribution assumptions of 
the (22) and (12) functions, the cost function of  (28) is 
restated as 

1 l o g ( 1  ^ 2 c ( w )  = ~  - p,.H,,.~) 

+ A II ity.H,y.v I -  IR ....... I +/~a~c I. (30) 

Under the Gaussian assumptions the entropy is 
proportional  to the determinant of  the autocorrela- 
tion function. The autocorrelation estimates of  the 
input X are given by Rx.., x.v = XXr, and similarly 
for the output  Y. These estimates are also used to 
compute the correlation coefficient PYHH, ^ 2 YHV" Through 
experimentation it was found that putting additional 
constraints on the output mean, variance, and skew 
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improved convergence and helped to avoid undesir- 
able local minima. The term Jmis¢ contains the sum of  
the additional constraints, such that 

respect to its own estimated histogram. This is done 
to make the data ranges approximately the same. The 
normalization is such that 

J.,.~ = I # , . .  I + t#y.v I + I ,~, . .  - ~, .v I + I % , ,  I + I%.v I- 
(31) 

The estimate of  the means 

I #y . .  I + I# , .v  I (32) 

is intended to ensure a zero-mean output. An equal 
output variance term, 

[ ~'yHH - ~yHV I (33) 

is introduced to encourage a circularly symmetric 
distribution. Finally, the third-order moment, or 
skew, is constrained; the additional penalty term is 

I~7HH I -F [ ~'yHV l" (34) 

N ~  

E h(i) = Ntotah (35) 
i=1 

Nb 

Z h(i)/Ntota, ~- 0.02, (36 / 
i=1 
Nb=, 

h(il/Ntota, "" 0.02, (37 / 

where h(i) is the estimated histogram, Nbins is the 
total number of histogram bins, Nb is the lower 2% 
bin (black), and Nw is the higher 2% bin (white) bin. 
Based on the Nb and the Nw values, the data are 
scaled to the [0,1] interval. The normalized data are 
then averaged, and the result processed by the CFAR 
algorithm. The un-informed choice for combining the 
normalized results from the individual networks is to 
sum them equally. 

The quantity is normalized for the Gaussian 
distribution so that zero skew is equal to the skew 
of a Gaussian distribution, which has maximum 
entropy. In summary, constraints are introduced on 
the moments of  the output  so as to force the output 
to approximate a Gaussian p.d.f. A constrained 
optimization routine is used to minimize the cost 
function. 

2.3. Modular Network Design Strategy 

Figure 5 is a diagram of  the modular network. After 
the data are processed by the ACPIC and RBF 
network, each resulting output is normalized with 

2.4. CFAR Processing and Detection 

A constant false alarm rate (CFAR) processor is 
commonly used in radar systems. It prevents 
saturation of the detector due to increases in clutter 
or noise by adapting the detection threshold in step 
with the changing clutter or noise conditions. 
Likewise, in the case that the clutter or noise 
decreases, it lowers the threshold thereby increasing 
the detectability of weaker targets which otherwise 
would be missed. The operation of CFAR systems 
has been widely studied (Goldstein, 1973; Skolnik, 
1980; Minkler & Minkler, 1990; Nitzberg, 1992). The 
basic idea is to estimate a sufficient statistic of  the 

MODULAR NEURAL NETWORK 

adapt ive 
cancel ler 

RBF neural 
network 

histogram 
normal izer 

histogram 
normal izer 

CFAR 
processor 

- to detector 

FIGURE 5. Modu lar  neura l  network 
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clutter, and to use this estimate to control a detection 
threshold so that a constant false alarm rate results. 

The C F A R  processor is now derived. For  the 
purposes of  this study, the clutter process is assumed 
to be Rayleigh distributed. The Rayleigh probability 
density function is given by 

(:) p(~) 2x - 7  
= a-- ~- exp , x > 0, (38) 

where x is the voltage amplitude, and 0 2 is the 
variance. The ideal logarithmic receiver is described 
by the function 

y = a log(bx), (39) 

where a and b are scale factors. Under these 
assumptions, Croney (1956) shows that the theore- 
tical variance of  the output  is 

a27r 2 
- -  2 4 '  (40)  

which is independent of the variance of  the input 
signal. The logarithmic receiver therefore has a 
CFAR-Iike operation, in the sense that clutter 
described by a Rayleigh distribution results in a 
constant variance in the output. The mean level of  the 
clutter, however, is a function of  the input power, and 
can be removed either by using a high-pass filter, or 
by using averaging to estimate the mean level and 
subtracting it. The cell-averaging CFAR (CA-CFAR) 
model assumes that the clutter in the neighbourhood 
of  a cell under test is a stationary statistical process, 
with independent samples, and is representative of 
the clutter in the test cell. In practice, these statistical 
assumptions are often not consistent with the 
operating environment, resulting in a loss in 
performance. 

To implement the desired cell-averaging operation, 
two-dimensional target masks and clutter masks are 
used. Two masks are defined: a 23 x 3 pixel mask for 
the target, and a 69 x 9 pixel mask for the 
surrounding clutter, as shown in Figure 6. The 
target mask size was chosen to reflect the approx- 
imate size of  the reflector target, and the clutter mask 
size was chosen to be large enough so as to provide a 
fair estimate of  the clutter power, while at the same 
time being small enough so as to be in a stationary 
region of  clutter. This is a trade-off in CA-CFAR 
processing. The two masks are co-located, centered 
on the same pixel, the clutter mask having zero 
response where the target mask coincides with it. The 
pixels in the mask are all equally weighted, although 
this need not  be the case. For  example, if there is a 
priori information about the clutter p.d.f, character- 
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FIGURE 6. Target and clutter masks used in CFAR processing. 

istics, or location of  the target within the clutter, a 
particular weighting configuration could have a 
better performance. No such assumptions are made 
here. The masks are convolved with the image; the 
clutter-convolved result is subtracted from the target- 
convolved result. For  a particular location in the 
image, the function can be expressed as 

1 ~' 1 
~i Ci' Y Nt • t i - ~ ¢  i (41) 

where y is the output,  ti is the set of  target pixels, Nt is 
the number of  target pixels in the mask, ci are the set 
of  surrounding clutter pixels, and Arc is the number of  
clutter pixel in the mask. For  the purposes of  this 
study, no a priori information is used about the 
clutter orientation or distribution. The resultant 
image formed by the CA-CFAR processor possesses 
improved target visibility. 

The detector stage after the CA-CFAR processing 
performs a thresholding function, which produces a 
binary result such that 

y >/3, b; = 1, target present 
y <_/3, bi = 0 ,  target absent, 

(42) 

for the ith pixel in the image. The parameter /3 
controls the false alarm rate. 

3. P ERF O RMA N CE EVALUATIONS 

3.1.  Tradi t ional  Process ing  

In the case of  traditional processing techniques, only 
HV-pol image data are used as input to enhance the 
reflector target visibility. This is done by sending the 
HV-pol image to a CF A R processor. The traditional 
processing results provide a benchmark by which to 
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DOFASCO DOFASCO 

La Salle Park 
FIGURE 7. The HH-pol sub-images of i.terest. 

gauge the performance of  the more sophisticated 
joint HH-pol and HV-pol processing techniques. 

In total, 28 scans (equivalent to 1 min worth) of  
radar data were recovered from a recording dated 23 
November,  1987, and preprocessed. This same data 
set was used throughout the study. The example sub- 
images shown in Figures 7 and 8 are the basis for the 
visual and numerical comparison of  the various joint 
signal processing techniques° Table 1 contains the 
position of  the reflectors, the calculated radar cross- 
section (RCS), and the radar cell sizes. It is assumed 
that a ship's tracking algorithm window would be 
initialized to an area of similar (or smaller) size, in 

La Salle Park 

FIGURE 8. The HV-pol sub-images with the locations of the 
reflectors marked. 

order to acquire and track the reflector target 
position as the ship navigates the channel. The sub- 
images chosen are 800 x 420 samples (azimuth 
samples × range samples). This corresponds to a 
physical area of  approximately 2100 x 2100 = 
4,410,000m 2. Although the data are presented in 
scan-converted form (cartesian coordinates), the 
processing is done in the B-scan domain (range- 
azimuth coordinates). 

The logarithmic receiver is characterized by 
injecting a test signal from a pulsed X-band; signal 
generator. In this way that instantaneous video 
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TABLE 1 
Experimenlal Parameters of the Radar Reflectors 

DOFASCO La Salle Park 

Range to ref lector 2300 m 3100 m 
Number of reflectors 2 1 
RCS of reflector 4846 m 2 458 m 2 

Reflector cell size (range) 7.5 m 7.5 m 
Reflector cell size 2.7 m 4.0 m 
(azimuth) 

voltage can be related to the input power, which is 
expressed in dBm (1 dBm = 10log10 W +  30, where 
W denotes the power level in watts). The digitized 
samples are then calibrated and range normalized 
using the radar range equation for a point target. The 
resultant RCS estimate is therefore equal to 

trR = er (471")3 ' R4 
Pt" G 2" A~r' (43) 

where R is the range in meters, Pt is the transmitted 
power, Pr is the received power, Ga is the one-way 
gain of  the antenna, and Ax is the wavelength of  the 
transmitted signal pulse. The absolute calibration of  
the system requires the measurement of  a calibration 
sphere. In the absence of  this, only a relative 
measurement is possible. Defining the RCS of  the 
target relative to a calibration sphere, 

O" R 
, r ,  = - - ,  ( 4 4 )  

o- o 

where % is the RCS of the calibration sphere in m 2, 
and O'r is the RCS of  the received signal relative to the 
calibration sphere, in m2/m 2. The radar equation in 
(43) can be rewritten in logarithmic terms, so that 

O'r = P, - Pt +40 loglo(R) + 30 log10(4~ ) - 20 logt0(Ax ) 

(45) 

-20  log I 0(G,) - L~sc(dBm. m2/m2), (46) 

where Zmis c contains the correction required for the 
calibration sphere and miscellaneous losses in the 
system that haven't  been accounted for (e.g., 
insertion loss of  rotary joint and feeds, VSWR 
mismatch). Since our  interest is only in the relative 
visibility of  the target, absolute calibration is 
unnecessary. Therefore, without loss of generality, it 
is assumed that Lmis¢ = 0 dB for the purposes of this 
paper. 

The target-to-clutter ratio (TCR) estimate is given 
by the ratio of  target power to clutter power. The 
TCR is given by 

TCR =/2t -/2c dBm, (47) 

where/2t is the estimated mean clutter response, and 
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/2c is the estimated mean clutter response. Unfortu- 
nately, the TCR estimate does not provide a good 
measure of  target enhancement or visibility. Various 
signal processing methods can scale the logarithmic 
data, resulting in a meaningless estimate of  the TCR. 
For  example, simply by scaling the data by a factor of 
2, the TCR value would also double, without any true 
enhancement to the target. To overcome this 
problem, a dimensionless measure based on the 
TCR is proposed as a figure of  merit by which to 
judge the various processing methods. The normal- 
ized TCR (NTCR) is given as 

NTCR = / ~ t  - 3c ' (48) 

where d~e is the estimated standard deviation of  the 
clutter power in dBm. If  we assume that the p.d.f.s 
are Gaussian, the N T C R  is equivalent to the 
threshold used to calculate the probability of  false 
alarm (PFA) for this model, where 

1 (NTCR'~ (49) 
PFA = Q (NTCR) = ~ erfc k, v~ } '  

where the Q function is itself defined by 

Q(x)A=---~ ~ e-yV2dy, (50) 

and erfc(.) is the complementary error function 
(Wozencraft & Jacobs, 1965). 

The target and clutter estimates are summarized in 
Table 2 for the HV-pol sub-images. The clutter 
patches were chosen to provide representative areas 
of  clutter from both sites. The clutter patch within the 
DOFASCO site is approximately 572 m in azimuth 
and 100 m in range, and the corresponding La Salle 
Park clutter patch is approximately 528 m in azimuth 
by 100 m in range. The clutter response within the 
patch areas is averaged, and then averaged over all 
the scans to estimate mean clutter level. The mean of  
the peak reflector target value is estimated by 
averaging the peak response within the reflector 
target cell area over the 28 scans. 

The resultant image formed by the traditional CA- 
CFAR processor possesses an enhanced visibility as 
demonstrated by the example sub-images shown in 
Figure 9. To improve the contrast of  the printed half- 

TABLE 2 
Estimated Parameters of Unprocessed HV-pol Sub-images 

DOFASCO La Salle Park 

Target (/),t, ~'t) (16.4, 0.3) dBm (19.4, 0.6) dBm 
Clutter (/2c, 6-c) (2.2, 1.2) dBm (-3.2,  3.9) dBm 
TCR 14.2 dBm 22.6 dBm 
Normal ized TCR 12 6 
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TABLE 3 
Estimated Parameters for CA-CFAR Processed HV-pol Sub- 

images 

DOFASCO La Salle Park 

Target (/),t, ot) (22.9, 0.3) dBm (24.0, 0.9) dBm 
Clutter (/~, 5c) (2.8, 1.2) dBm (-2.0, 3.7) dBm 
TCR 20.1 dBm 26.0 dBm 
Normalized TCR 16 7 

was experimentally determined to be 10 -4. This is 
confirmed by the transient response analysis. Using 
(5) and assuming a = -30  dBm, the time constant of 

DOFASCO 

iii!iiiiiil;iiiii! 

La Salle Park 
FIGURE 9. Sub-images of the CFAR 
detection. 

processing, prior to 

tone sub-images, the lower 8% of the image values 
are mapped to black for all CFAR processed images 
(as estimated from the estimated histogram). 

The enhanced target visibility should be reflected 
in higher NTCR values. Comparing results, the 
normalized TCR values in Table 3 show an 
improvement over the corresponding NTCR values 
for the unprocessed HV-pol images in Table 2. 

3.2. ACPIC Processing 

A reasonable setting for the adaptation constant # 

DOFASCO 

La Salle Park 
FIGURE 10. Sub-images of ACPIC processed data. 
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the adaptive canceller is found to be approximately 
10.6T, where T is the sample interval. The target 
response in range is approximately 2 T - - 3 T ;  so 
therefore the time constant meets the requirement of  
being short enough to adapt quickly to changing 
clutter conditions, and yet long enough for the target 
to not be filtered out. 

The sub-images shown in Figure 10 are the result 
of  processing with the adaptive interference canceller 
algorithm, followed by CA-CFAR. As is easily 
observed from the images, both the DO-FASCO 
and La Salle Park reflectors show greatly improved 
visibility. Table 4 summarizes the factor of  improve- 
ment for the adaptive cross-polar clutter canceller 
output. The N T C R  values exceed that o f  the CA- 
C F A R  only processed images by nearly 20, indicating 
that the correlation between HH-pol and HV-pol radar 
sweeps is high. 

A performance limitation of  the canceller is 
generally observable along the edge of  the sea and 
land clutter boundary. It takes a finite period of  time 
(proportional to the time constant of  the adaptive 
algorithm) for the canceller to respond to a different 
clutter region, in this case, land clutter. During this 
time an increase in clutter power can appear at the 
output. 

3.3. Mutual Information Network Processing 

First, a mixture density is learned using the EM 
algorithm, as described in Section 2.2.3. A 200 x 200 
pixel clutter region is used for training. The scatter 
plot of  the combined DOFASCO and La Salle Park 
input data are shown in Figure 12, with the learned 
ellipsoidal standard deviations of  the components of 
the mixture of  Gaussian densities superimposed. The 
number of  components in the density used to model 
the clutter is chosen to be seven, with two extra units 
introduced to represent the reflectors. These extra 
units were introduced manually in order to have a 
response from the target as well as the clutter. The 
manual introduction was necessary since the number 
of  target samples is under-represented in the available 
data; a statistical learning method gives the target 
samples little weight, leaving the targets unrepre- 
sented. The locations of  the centers is approximated 
from scatter plot of  the target samples (see Figure 
11), and set equal to (13,18) dBm and (6,14) dBm. 

TABLE 4 

TCR Estimate for ACPICICA-CFAR Processed Sub-images 

DOFASCO La Salle Park 

Target (/~t, ot) (20.8, 2.2) clBm (25.8, 2.6) dBm 
Clutter (/~.t, at) (-0.4, 0.6) dBm (1.3, 0.8) dBm 
TCR 21.2 dBm 24.5 dBm 
Normalized TCR 35 29 
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FIGURE 11. Scatter plot of training data. The components of the 
estimated mixture densities are superimposed. 

The covariances are chosen to be circular, equal to 
-- diag(4, 4) dBm. Having adequately modeled the 

clutter and targets, the parameters are transferred to 
the RBF network, as described in Section 2.2.5. The 
parameters of  the nine two-dimensional mixture 
component densities are projected onto the XHH and 
XHV axes, resulting in parameters for 18 one- 
dimensional RBF units. To improve the interpola- 
tion quality of  the network, the factor a = 0.01 is 
applied to the clutter spread parameters. 

The next step is the mutual information training to 
learn to the weights. A sub-sampled data set from 
DOFASCO and La Salle Park regions is used for this 
purpose. The data set is the same as the one shown in 
the scatter plot, with the same area coverage as the 
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FIGURE 13. Surface plot off nonlinear transformation learned by the RBF network. 

sub-images, except sub-sampled in range by a factor 
of  four and in azimuth by a factor of 10. The weights 
are initialized to approximate the same mapping as 
that of  linear network by solving for the RBF weights 
using least-squares fitting. A constrained optimiza- 
tion routine is used to minimize the cost function 
given by (30), subject to the constraints. After 
convergence, the residual mutual information is 
estimated to be equal to approximately 0.036 bits. 
The scatter plot of the output of  the network is shown 
in Figure 12. As can be observed, the data 
distribution is more clustered around a single point, 
rather than distributed over a large range as in the 
scatter plot of  the input data. Figure 13 shows the 
resultant non-linear mapping learned by the RBF 
network. The inputs are along the x- and y-axes, and 
the z-axis height is the YHV output. 

The output  of the network is processed by the 
C F A R  algorithm, as in the ACPIC case. The 
resultant sub-images in Figure 14 show much 
enhanced target visibility, in both DOFASCO and 
La Salle Park areas. The clutter is generally well 
suppressed. However, some false targets are visible as 
well. The statistics in Table 5 verify the higher 
visibility of the target. The normalized TCR values 
are the highest of  all the individual methods 
considered thus far, for both DOFASCO and La 
Salle Park areas. 

3.4. Modular Neural Network Processor 

The sub-images in Figure 15 show an example of  the 
resultant output  from the modular network. The 
images retain desirable characteristics of  both the 
individual processing techniques, suppressing both 
average and peak clutter while enhancing the target. 

The estimated normalized TCR in Table 6 shows an 
improvement for the La Salle Park area, while the 
value for the DOFASCO area stayed essentially 
unchanged. It is likely that no further improvement is 
possible in the DOFASCO area in terms of the 
normalized TCR measure. 

The normalized TCR was introduced as a measure 
that is useful for quantifying the visibility of the target 
against the average background clutter. A new 
measure is now introduced, namely the estimate of 
the receiver operating characteristic (ROC), which 
plots the estimated probability of detection against the 
estimated probabilty of  false alarm for a particular 
processor. The ROC is indicative of  the suppression of 
the peak clutter phenomenon, which drives the false 
alarm rate. A thorough statistical analysis for 
estimating the ROC requires many independent data 
sets containing target and clutter. Unfortunately, this 
experiment limits the analysis to a single scene 
averaged over 28 scans. Proceeding with this 
limitation in mind, the ROCs are plotted for the 
adaptive interference canceller network in Figure 16, 
for the RBF network in Figure 17, and for the 
modular network shown in Figure 18. The dotted lines 
show the 90% confidence intervals for the estimated 
probablity of  detection, and false alarm. The number 
of target samples is low; accordingly the graph to the 
left of  the dotted line is regarded as not statistically 
significant. However, the overall trends indicated in 
the graph still provide useful information. 

As can be observed from these plots, the ROC for 
the modular network shows an improvement for the 
DOFASCO area, yet no improvement is noted for the 
La Salle Park area. This is in contrast to the NTCR 
estimates which indicated improvement in the La 
Salle Park area but not in the DOFASCO area. The 
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DOFASCO DOFASCO 

La Salle Park 
FIGURE 14. Sub-images of the RBF network-processed data. 

average visibility is increased in the case of the La 
Salle Park area, and the peak clutter that is 
responsible for false alarms is reduced in the 
DOFASCO area (as suggested by the ROC plots). 

TABLE 5 
Estimated Parameters of RBF Network-processed Sub-images 

DOFASCO La Salle Park 

Target (/~t, ~t) (84.4, 4.09) (93.1, 6.22) 
Clutter (/~c, 5c) (11.1, 1.58) (10.7, 2.74) 
TCR 80.4 82.4 
Normalized TCR 46 30 

La Salle Park 
FIGURE 15. Sub-images of modular network-processed date. 

This shows that the modular network is able to 
integrate the performance aspects of  both networks 
to give an improved overall result. 

TABLE 6 
Estimated Parameters of Modular Network Processed Sub- 

images 

DOFASCO La Salle Park 

Target (/2t, 50 (2.06, 0.10) (2.68, 0.18) 
Clutter (/2c, 5c) (0.522, 0.034) (0.556, 0.067) 
TCR 1.54 2.12 
Normalized TCR 46 32 
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FIGURE 16. Estimated receiver operating characteristic curves 
for the adaptive Interference canceller network output. 

4. P O S T - D E T E C T I O N  P R O C E S S I N G  

The radar environment contains various forms of 
clutter which may have high cross-polar radar 
returns. This type of  clutter causes false alarms, 
degrading the overall performance of  the detection 
system. Up to this point, the processing has not made 
use of  any a priori  information about  the target 
location. A priori  information about  the target 
position will now be used in a post-detection 
processor to reduce the false alarm rate to a very 
small number. 

One observation can be readily made about  the 
location of  a reflector target: the reflector must be 
visible to ships navigating the confined waterway, and 
should therefore be located near an unobstructed 
water- land interface. Although other choices further 
inland are possible, natural and man-made  obstruc- 
tions are more likely to limit target visibility, and 
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La Salle Park 
FIGURE 17. Estimated receiver operating characteristic curves 
for the RBF network output. 

therefore make these locations a poor  choice in 
general. It  is therefore assumed that the reflector will 
always be located at a preferred location near the 
water- land interface, and detections that are distant 
from this boundary  can be discounted as likely to be 
false alarms. 

Another  observation about  the reflector target 
position is that the locations chosen for the reflectors 
would not be adjacent to an area containing clutter 
with high cross-polar radar  returns. It  is perceived to 
be an easy task to ensure that the reflectors are 
located in an area where cross-polar clutter is 
minimal, since this is under the control of  the 
installers of  the navigational system. 

The post-detection processor described is designed 
to combine a priori  location information along with 
the pr imary detection results, thus giving an 
improved final detection result. In this manner,  false 
alarms can be virutally eliminated. Figure 19 is a 
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for the modular network output. 

block diagram of the entire signal processing, 
detection and post-detection system. 

The output of the HH-pol and HV-pol modular 
network processing stage is presented to the detection 
system. After CFAR processing, the output of the 
threshold detector is a binary map of the location of 
the detections. If the threshold is set sufficiently low, 
both targets and false alarms are included in the set of 
detections. The water-land interface of interest is 
determined automatically using a vision-based edge 
detection algorithm, known as the CARTOON algorithm 
(Richards et al., 1988). The algorithm is tuned to the 
radar environment, accepting the HH-pol radar image 
as input in B-scn form (range-azimuth coordinates) 
and producing an edge map at the output. 

4.1. The CARTOON algorithm 

A block diagram of the CARTOON algorithm is shown 

in Figure 20. The basis of the algorithm is the 
detection of zero-crossings of an image after being 
filtered by the Laplacian operator 

VEG(x, y), G(x, y) = e -I/2(x2/d+y2/d). (51) 

The location of the zero-crossings correspond to 
edges in the image. This Laplacian operator is 
discussed in detail by Marr (1982). In general, the 
operator is chosen to be circularly symmetric. The 
algorithm was generalized in this particular applica- 
tion to use ellipitically symmetric Gaussian operators, 
since the resolution of the radar image is generally 
different in range and in azimuth. The Laplacian of 
the Gaussian operator (normalized) is therefore 

x2 y2 
(52) 

The CARTOON algorithm makes use of the fine and 
coarse operator masks to achieve a robust edge map, 
as indicated in Figure 20 by VEGf for the fine mask 
and V2Gc for the coarse mask. After filtering with the 
masks, the positive and negative bitmaps are created 
by thresholding the images at 50% of their range 
between minimum and maximum values. The 
resultant bitmaps and ANDed together, and then 
smoothed by a Gaussian mask. The smoothed 
bitmaps are then thresholded at 6% of their range 
between minimum and maximum values. These 
bitmaps are ANDed together to form the resultant 
binary edge map. Only edges that are common to 
both fine and coarse filtered bitmaps appear in the 
final output. 

The parameters of the CARTOON algorithm need to 
be adjusted to match the resolution of the radar 
system, and the scale of the desired edge map. Two 
masks, a fine mask and a coarse mask, need to be 
chosen so as to be fine enough to preserve the desired 
detail in the edges, yet coarse enough so that noise 
and small objects do not get recognized as edges. The 
scale was purposefully chosen so that small objects, 
such as ships, do not get detected as edges. For the 
fine mask, parameters trx = 6 and try = 24, and for 
the coarse mask, parameters trx = 12 and try = 48 are 
used. The Gaussian smoothing mask used is chosen 
to be half the size of the fine mask, so that trx = 3 and 
t r y=  12 for the operator. The thresholds are 
determined through experimentation. The first set 
of thresholds (that produce the fine and coarse edge 
maps) is set to 48% of the range between minimum 
and maximum values of the respective images that are 
presented to the threshold function. The second set of 
thresholds (that produce the positive and negative 
edge maps) is set to 6% of the range between 
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FIGURE 19. Block diagram of modular signal processing and detection system. 

minimum and maximum values of  the respective 
images that are presented to the threshold function. 

Figure 21 shows the results for the scenes of 
interest. Note  the false edge artifacts found in the La 
Salle Park image. These are due to the finite support 
of  the image, and do not pose a serious problem. 
They can simply be ignored since the likelihood of  
false alarms as a result of  sea clutter in a confined 
waterway is extremely low. In practice, we need only 
choose an image slightly larger than that required to 
avoid these artifacts. 

Since we are only interested in the first water-land 
interface, the edge map produced by the CARTOON 
algorithm is presented to a "first-edge" detector, which 

responds to the first edge it finds along each radar 
sweep; the resulting edge map is shown in Figure 22. 

4.2. Fuzzy Detection Processing 

Fuzzy set theory is next used to combine the two 
pieces of information, specifically, that of detection 
locations and "first-edge" locations. The intersection 
of  these two fuzzy sets effectively combines the 
detections with the edge information, resulting in a 
greatly reduced false alarm rate. 

The crisp set of  primary detections is fuzzified by 
choosing a Gaussian form for thc membership 
function of  the location of the detection. In a similar 
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fashion, a Gaussian form for the membership function 
is used to specify the degree of  "edginess" at a 
particular location in the radar image. This is done by 
superimposing a Gaussian function at each pixel in the 
corresponding detection and edge images. The two- 
dimensional Gaussian membership function is cen- 
tered on each white pixel. Since adjacent pixels tend to 
cause the membership functions to overlap, the fuzzy 
union operator is used to combine these subsets. The 
resultant membership function is defined as 

#o(x, y) = Ui#F(X -- xi, y -- Yi), (53) 

where xi  and Yi are the locations of  the non-zero 
pixels in the radar images, #F is the membership 
function for the individual pixels, and the fuzzy union 
operator V is defined as 

Ui #F ( Xi, Yi ) max ItF ( Xi, y, ). (54) 

The operator  finds the maximum value over the set of  
overlapping membership functions at each image 
location (x, y) (Terano et al., 1992). 

We are interested in the case where a detection is in 
the vicinity of  an edge, or in other words, when a 
target and an edge are present together. It follows 
that the desired resultant set can be found by taking 
the intersection of  the fuzzy set of  detections with the 
fuzzy set of  image edginess, such that 

#8(x, y) = I~Gd(X, y) A Izoe(x, y),  (55) 

where #Od is the fuzzy set of  detections, and/ZGe is the 
fuzzy set of  edges. This is equivalent to determining 
the minimum value between the two fuzzy sets at each 
(x, y) location (Terano et al., 1992). Finally, since we 
are interested in a binary result, we need to defuzzify 
the set #R(x,  y). A threshold is chosen in order to 
make the set of  post-detections crisp, or in other 



164 A. M. Ukrainec and S. Haykin 
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Dofasco Dofasco 

La Salle Park 
FIGURE 21. Binary edge maps produced by the CARTOON 
algorithm. 

words, binary valued. The final binary result contains 
only detections that are near edges, which should be 
our reflector targets. Since edges (as defined in this 
section) generally occupy a small percentage of the 
total area of  interest, this post-detection processor 
greatly reduces the probablity of  false alarm. 

4.3. Example of Post-Detection Processing 

To demonstrate the operation of  the post-detection 
processor, a threshold level was chosen for the 
primary detection stage such that the false alarms 

La Salle Park 
FIGURE 22. Result after radially processed 
detection 

"first-edge" 

would be present in the output. The fuzzified 
detections are shown in Figure 23, and the fuzzified 
"first-edges" in Figure 24. The Gaussian membership 
function was chosen to have the same parameters as 
that used for the smoothing function in the CARTOON 
algorithm. The final post-detection results are shown 
in Figure 25, where they are superimposed on a 
reduced intensity HH-pol image as a guide to the 
location of  the detections. The false alarms are 
present after primary detections have been effec- 
tively removed, leaving only the targets of  interest. 

Only the "first-edge" areas are considered suitable 
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Dofasco Dofasco 

La Salle Pa rk  
FIGURE 23. Gausslan membership function applied to primary 
detecHons. 

locations for the reflector targets. As long as this 
assumption holds true, it is obvious that  the false 
alarm rate is reduced by the factor of  first edge area 
over the total area of  interest. Since the "first-edge" 
areas are estimated to be approximately 10% of  the 
total sub-image land clutter area, the false alarm is 
reduced by a factor  o f  10 or more. 

5. S U M M A R Y  

The estimated normalized target-to-clutter ratio for 
the various signal processing methods examined in 

La Salle Park  
FIGURE 24. Gausslan membership function applied to "first- 
edge" image. 

this paper  are summarized in Table 7. Each of  the 
processing methods has a distinct character. The CA- 
C F A R  processor uses a two-dimensional local 
estimate of  clutter to achieve a constant false alarm 
rate performance at the output. The ACPIC  
processor reduces clutter in a non-stat ionary clutter 
environment.  The RBF network uses non-linear 
mapping  to overcome the non-Gaussian nature of  
clutter statistics and provides a superior target 
enhancement.  By integrating the desirable character- 
istics o f  these sub-network solutions into a modular  
network structure, a final average (and peak) clutter 
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Dofasco  

resul t ing enhanced  images  are p resen ted  to the 
ope ra to r ,  as well as to the p r i m a r y  th resho ld  detector .  
The  pos t -de tec t ion  stage str ives to mimic  h u m a n  
reasoning,  a lbei t  in a pr imi t ive  fashion.  I t  i ncorpora te s  
a priori  i n fo rma t ion  a b o u t  the  con tex t  o f  the 
wa te rway  and  the l ikely loca t ion  o f  the r a d a r  
reflectors.  The  so lu t ion  involves a novel  c o m b i n a t i o n  
o f  a v i s ion-based  image  process ing  technique  and  a 
fuzzy processor .  The  v i s ion-based  edge detec t ion  
a lgor i thm,  CARTOON, is genera l ized  to opera te  at  
r a d a r  resolut ions .  The  fuzzy set r eason ing  combines  
the edge i n fo rma t ion  c o r r e s p o n d i n g  to  the w a t e r - l a n d  
b o u n d a r y  with  p r i m a r y  de tec t ion  results  to  remove 
false targets .  A d e m o n s t r a t i o n  us ing example  images  
successfully e l imina tes  false targets  f rom the image,  
leaving only  the des i red  ref lector  t a rge t  locat ions.  

The ent ire  signal  process ing  and  de tec t ion  system 
is implemen tab le  with re la t ively  s imple ana log  
process ing elements ,  in the spir i t  o f  a m o d u l a r  
neura l  ne twork  archi tec ture .  

La  Salle P a r k  

FIGURE 25. Final post-detection result. The original HH-pol 
image is superimposed as a visual aid. 

suppress ion  pe r fo rmance  is achieved tha t  is be t te r  
than  a n y  one  o f  the me thods  used by itself. The  

TABLE 7 
Summary of NTCRpe~ormance ofvarious signalprocessors 

Type of processor 

NTCR 

DOFASCO La Salle Park 

CA-CFAR 16 7 
ACPIC/CA-CFAR 35 29 
RBF net/CA-CFAR 46 30 
Modular/CA-CFAR 46 32 
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NOMENCLATURE 

detection threshold 
HH-pol sampled video return 
processed HV-pol sampled video 
primary detection i 
final detection i 
optimum tap-weight 
statistical correlation between XHH and 

XHV at lag 0 
sample index 
total number of samples 
output of interference canceller, at 

sample n 
estimated tap weight 
step-size parameter of LMS algorithm 
statistical variance of a process XHH 
constants 
time constant 
sample period 
probability density function (p.d.f.) 
support set 
entropy of X 
Kullback-Leibler distance 
mutual information 
autocorrelation matrix 
determinant of a matrix 
correlation coefficient between x, y 
correlation function between x, y at 

lag 0 
statistical mean of a process 
weight matrix 
radial basis function j 
data vector 
basis function center j 
basis function spread j 
weight connecting j th  hidden unit to 

ith output 
number of hidden layer units 
p.d.f, of vector x 
vector of parameters 
a priori probability j 
dimensionality of multivariate density 
covariance matrix j 
vector mean j 
spread factor 
cost function 
Lagrangian factor 
expectation 
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Jmisc 

h(i) 
Nbins 
Ntotal 
Nb 
Nw 
li 
Ci 
Nt 
Nc 
R 
Ga 
Pr 
Pt 

miscellaneous cost terms 
estimated skew parameter 
estimated histogram at bin i 
number of histogram bins 
total number of image data points 
bin number of 2% black level 
bin number of 2% white level 
target pixels 
clutter pixels 
number of target pixels 
number of clutter pixels 
range 
one-way gain of antenna 
received power 
transmitted power 

)~x 
o- R 
ao 

O" r 

Lmi~c 
/~t 

Q(x) 
V2G(x, y) 

#G(X, y) 
Vi 
A 

wavelength 
radar cross-section of target 
radar cross-section of calibration 

sphere 
relative radar cross-section 
miscellaneous losses 
estimated mean target response 
estimated mean clutter response 
estimated standard deviation clutter 

response 
Q-function 
Laplacian operator 
fuzzy membership function 
fuzzy union operator over i 
fuzzy intersection operator 


