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T
his article discusses a new idea called cognitive radar.
Three ingredients are basic to the constitution of
cognitive radar: 1) intelligent signal processing,
which builds on learning through interactions of the
radar with the surrounding environment; 

2) feedback from the receiver to the transmitter, which is a facili-
tator of intelligence; and 3) preservation of the information con-
tent of radar returns, which is realized by the Bayesian approach
to target detection through tracking. All three of these ingredi-
ents feature in the echo-location system of a bat, which may be
viewed as a physical realization (albeit in neurobiological terms)
of cognitive radar.

Radar is a remote-sensing system that is widely used for sur-
veillance, tracking, and imaging applications, for both civilian
and military needs. In this article, we focus on future possibilities
of radar with particular emphasis on the issue of cognition. As an
illustrative case study along the way, we consider the problem of
radar surveillance applied to an ocean environment.

According to the Oxford English Dictionary, cognition is
“knowing, perceiving, or conceiving as an act.” Given three dis-
tinct capabilities:

■ the inherent ability of radar to sense its environment on a
continuous basis
■ the ability of phased-array antennas to electronically scan
the environment in a fast manner
■ the ever-increasing power of computers to digitally process
signals

it is our conviction that it is indeed feasible to build a cogni-
tive radar system using today’s technology. Indeed, if ever
there was a remote-sensing system well suited for cognition,
radar is it.

From the moment a surveillance radar system is switched on,
the system becomes electromagnetically linked to its surround-
ing environment in the sense that the environment has a strong
and continuous influence on the radar returns (i.e., echoes). In
so doing, the radar builds up its knowledge of the environment
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from one scan to the next and makes decisions of interest on pos-
sible targets at unknown locations in the environment; the loca-
tions are not known before the radar is switched on, but they
become determined by the radar receiver once the targets under
surveillance are declared. From signal processing and control
theory, we know that it is not necessary for the radar to keep the
entire record of past data. Rather, by adopting a state-space
model of the environment and recursively updating the state vec-
tor representing an estimate of certain parameters pertaining to
the environment, the need for storing the entire history of radar
data on the environment is eliminated.

The requirement to update estimation of the environmental
state is necessitated by the fact that the radar environment is
nonstationary. A primary cause of nonstationarity is statistical
variations in the weather and the presence of unknown targets
at unknown locations. Recursive updating of a state is synony-
mous with adaptivity, which is the natural method for dealing
with nonstationarity. In current designs of radar systems, how-
ever, adaptivity is usually confined to the receiver. For the radar
to be cognitive, adaptivity has to be extended to the transmitter
too. Moreover, the radar has to learn from experience on how to
deal with different targets, large and small, and at widely vary-
ing ranges, all in an effective and robust manner.

COGNITIVE SIGNAL PROCESSING CYCLE
The Oxford dictionary definition of cognition includes conceiv-
ing, which might be taken to mean “the formulation of a
hypothesis, and then testing that hypothesis for the likelihood of
its correctness.” This statement is in the spirit of the Bayesian
approach to state estimation, with a probabilistic rating of alter-
natives. We are therefore emboldened to embrace the idea of
Bayesian inference under the umbrella of cognitive radar.

This way of thinking leads us to the block diagram of
Figure 1, which depicts the picture of a cognitive cycle per-

formed by a cognitive radar system. The cycle begins with the
transmitter illuminating the environment. The radar returns
produced by the environment are fed into two functional blocks:
radar-scene analyzer and Bayesian target-tracker. The tracker
makes decisions on the possible presence of targets on a contin-
uing time basis, in light of information on the environment pro-
vided to it by the radar-scene analyzer. The transmitter, in turn,
illuminates the environment in light of the decisions made on
possible targets, which are fed back to it by the receiver. The
cycle is then repeated over and over again. Unlike a communica-
tion system, the feedback mechanism, which is a necessary
requirement of a cognitive system, is easy to implement as the
radar transmitter and receiver are usually co-located. Note also
that although the process of target detection is not explicitly
shown in the cognitive cycle of Figure 1, it is part and parcel of
the Bayesian target-tracker, which performs detection through
tracking as explained later.

Based on Figure 1, a cognitive radar distinguishes itself from
an adaptive radar in three important respects.

■ The radar continuously learns about the environment
through experience gained from interactions with the envi-
ronment and, in a corresponding way, continually updates the
receiver with relevant information on the environment.
■ The transmitter adjusts its illumination of the environ-
ment in an intelligent manner, taking into account such
practical matters as the size of the target and its range, and
consequently, making adjustments to the transmitted signal
in an effective and robust manner.
■ The whole radar system constitutes a dynamic closed feed-
back loop encompassing the transmitter, environment, and
receiver.
It is well known that feedback is like a double-edged sword in

that it can become harmful if it is used improperly; care must
therefore be exercised in how the transmitter is designed in

[FIG1] Block diagram of cognitive radar viewed as a dynamic closed-loop feedback system.
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relation to the environment and receiver so as to maintain sta-
ble and reliable operation at all times. 

One other important comment is in order. In reality, cogni-
tion is a two-way process, one being inside out and the other
being outside in. These two parts of the cognitive process are so
referred to, depending on whether the source of information
leading to cognition resides inside or outside the receiver,
respectively, as explained here.

■ The inside-out part of cognition is represented by prior
knowledge on the environment, and which is an integral
part of the receiver, as shown in Figure 1. The form of prior
knowledge is naturally application dependent. For example,
it may take the form of a
geographic map, elevation
model, or kinematics of
noncooperative targets. The
Bayesian target-tracker
retrieves information from
the prior-knowledge base and
utilizes it for improved radar performance on a need-be
basis. Prior knowledge may be viewed as long-term memo-
ry of the receiver.
■ In contrast, the outside-in part of cognition may be viewed
as short-term memory, which is developed by the receiver on
the fly. It is initiated by the radar-scene analyzer in response
to information-bearing signals gathered on the outside envi-
ronment by the radar itself as well as other sensors working
cooperatively with the radar. 

It is noteworthy that the knowledge-based (KB) radar system
described in [1] may be viewed as an inside-out cognitive sys-
tem, embodying heuristics for determining how and when the
signal-processing chain should be changed. The heuristics are
developed through prior experimentation using a KB
approach to target detection with human intervention; the
human intervention is subsequently captured and then
embedded into the receiver.

RADAR-SCENE ANALYSIS
The function of the radar-scene analyzer is to provide the
receiver with information on the environment, which is of crit-
ical importance to the decisions made by the receiver on possi-
ble targets of interest. This function builds on two sources of
information-bearing signals.

■ radar returns, which are produced by the environment in
response to the radar’s own transmitted signal
■ other relevant information on the environment (e.g., tem-
perature, humidity, pressure, sea-state), which is gathered on
the fly by sensors other than the radar itself.

These two sources of inputs constitute the stimuli for the out-
side-in part of radar cognition.

In a surveillance scenario, radar performance is affected sig-
nificantly by the unavoidable presence of interference. Typically,
the interference is dominated by clutter (i.e., radar returns pro-
duced by undesired targets). Accordingly, to design a target
tracker which embodies target detection, we need two kinds of

information, one pertaining to the clutter acting alone and the
other pertaining to the target plus clutter.

STATISTICAL MODELING OF STATISTICAL
REPRESENTATION OF CLUTTER- AND 
TARGET-RELATED INFORMATION
To describe how these two pieces of information can be
addressed in specific terms, consider the case of a coherent
radar dwelling on a particular patch of the ocean surface. With
the radar being coherent, the radar returns contain amplitude
as well as Doppler information on that patch. Correspondingly,
the baseband version of the radar returns will be complex

valued. Now, the dwelling
process can be of a long-term
nature, in which case the non-
stationary character of the radar
returns becomes quite notice-
able. In situations of this kind,
we may be forced to avoid mod-

eling the actual Doppler spectrum (i.e., plot of average power
versus frequency) of the radar returns. We do so by exploiting
the following intuitively satisfying observations that the
Doppler spectrum of clutter by itself is relatively smooth,
whereas the spectral content of the radar echo from a target
appears essentially as a line component.

However, when the target cross section is small and the 
target-to-clutter power ratio is therefore low, we need to
enhance the line component due to the target. This enhance-
ment may be achieved by performing the transformation of
dividing the average power in each Doppler bin of the spectrum
(pertaining to the range-azimuth resolution cell of interest) by
the mean of its neighboring bins, say k in number [2], [3].

This transformation has the desired effect of accentuating
the narrow peak of the line component due to the target and, at
the same time, lowering the relatively wide peak of the clutter.
Inspiration for the transformation, called a peak filter, is traced
to the grouped periodogram test described in Priestly [4], which
was itself inspired by prior work done by Tukey in 1949. The sta-
tistics of the peak filter output, in the absence of a target, may
now be evaluated under three assumptions [2], [3].

■ None of the k neighboring Doppler bins in the power spec-
trum contains a target.
■ Inside a spectral window encompassing (k + 1) Doppler
bins, the continuous clutter power spectrum is approximately
constant.
■ All (k + 1) ordinates of the power spectrum are sampled
independently.
Under these three assumptions, the individual ordinates of

the actual power spectrum have a X 2 distribution with two
degrees-of-freedom (DOF) [4]. Correspondingly, the peak-fil-
ter output, which divides each spectrum ordinate by k others,
has a hypergeometric distribution, specifically an F-distribu-
tion with (2, 2k) DOF [2], [3]. On this basis, the clutter statis-
tics are described by the distribution F2,2k(z), where z is a
random variable (i.e., average clutter power measurement). In
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[5], a similar conclusion is made using stochastic differential
equation theory.

Turning next to the target that is typically unknown, mod-
eling its statistics is unfortunately not straightforward. For
ease of implementation and due to lack of detailed knowledge
about the target, it may be prudent to assume that the target
has the same distribution that governs the clutter but with a
difference. (This assumption may hold in the case of a small
target moving on an ocean surface, in which case, the underly-
ing dynamics of the clutter and the target are closely coupled.)
Accordingly, if the clutter distribution is described by F2,2k(z),
the target distribution is taken to be (1/γ )F2,2k(z/γ ), where z
is a power spectrum measure-
ment and γ is the target-to-
clutter power ratio [2], [3].

In addition to the target sta-
tistics, the receiver needs to
have a model that accounts for
the motion of the target. To
this end, we may assume that
the target has a Gaussian-distributed acceleration with vari-
ance σ 2, which characterizes the agility of the target. For a
low standard deviation σ , the target is seen by the radar when
it is not accelerating; on the other hand, for a high σ , the task
of target detection may become difficult due to possible confu-
sion of the target with small clutter peaks, hence the likeli-
hood of the radar making a decision error.

In summary, for an ocean environment under surveillance
by a coherent radar, information on radar returns processed by
the radar scene analyzer for a particular range-azimuth cell may
be modeled as follows:

■ Clutter statistics, described by the F-distribution F2,2k(z),
where z is a power spectrum measurement and k is the num-
ber of neighboring Doppler bins over which the measurement
is averaged.
■ Target-plus-clutter statistics, described by the scaled 
F-distribution (1/γ )F2,2k(z/γ ), where γ is the target-to-
clutter power ratio.
■ Target motion, described by a Gaussian-distributed accelera-
tion with a variance σ 2, which accounts for the target’s agility.
It must be reemphasized, however, that this model is appro-

priate for the specific case of a target moving on an ocean sur-
face. For other environmental scenarios, the radar designer is
challenged to develop appropriate statistical models to describe
the information content of radar returns on clutter and targets.

BAYESIAN TARGET TRACKING
In [2] and [3], a Bayesian strategy is described for the
coherent radar detection of small targets in the presence of
sea clutter. Unlike conventional tracking algorithms that
perform intermediate detections (i.e., hard decisions) on
the radar returns, the new algorithm processes the radar
returns directly. In [6], Bruno and Moura also describe a
Bayesian approach to the tracking problem. Given a search
space of R range-azimuth resolution cells and M possible

targets, their algorithm is designed to track any of the tar-
gets. The algorithm does so by first computing the probabil-
ity of  each of  the 2M dif ferent target combinations.
Specifically, the centroid of each target can be in any of the
R resolution cells or else be absent. The Bayesian tracking
approach described in [2] and [3], however, is different in
that it is formulated in such a way that the algorithm can
also operate in a smoothing mode, with the probability dis-
tribution of the smoothed output being conditional on both
past and future observations. 

Specifically, the algorithm, referred to as a direct tracking
algorithm in [2] and [3], consists of three basic steps:

1)  For a given search area,
radar returns are collected over
a certain period of time.
2)  For each range-azimuth res-
olution cell in the search space,
the probability that the cell con-
tains a target is computed.
3)  With the evolution of target

probability distribution resulting from the recursive compu-
tation of step 2 over time, target tracks are detected, and cor-
responding hard decisions on possible targets are
subsequently made.

In effect, the algorithm (formulated in probabilistic terms) may
be viewed as a soft-decision detection procedure.

To set the stage for the Bayesian framework, let there be a
total of R range-azimuth resolution cells in the search space S,
and let r ∈ S denote a resolution cell in question. Let εr

t denote
the event of a single target occurring in resolution cell r at dis-
crete time t. Let the vector zt denote the frame that is made up
of the spectral measurements for all R resolution cells at time t.
The matrix

Zt = [zt, zt−1, . . . , z2, z1] = [zt, Zt−1]

denotes the full set of all the available frames extending up to
and including time t. Then, according to this notation, the vec-
tor zt denotes the current frame and the remaining matrix Zt−1

denotes the combined set of all past frames. By the same token
Zt+1 denotes the combination of a future frame zt+1, the cur-
rent frame zt, and all past frames Zt−1.

Following the traditional approach to state estimation,
we may now identify three different forms of the Bayesian
target-tracker:

■ one-step predictor, whose output is described by the condi-
tional probability P(εr

t |Zt−1)

■ filter, whose output is described by the conditional proba-
bility P(εr

t |Zt)

■ smoother, whose output is described by the expanded con-
ditional probability P(εr

t |Zt+1).
Smoothing uses more information than both prediction and

filtering and may therefore be more accurate than both of them
in a statistical sense. On the other hand, however, only predic-
tion and filtering can be implemented in real time.

THE FUNCTION OF THE RADAR-SCENE
ANALYZER IS TO PROVIDE THE
RECEIVER  WITH INFORMATION

ON THE ENVIRONMENT.



ONE-STEP TRACKING PREDICTION
Consider the joint event (εr

t, ε
q
t−1), which describes a target

occurring in resolution cell q at time t − 1 and then moving
into resolution cell r at time t. From probability theory, we may
express the output of the tracking predictor at time t as

P
(
εr

t |Zt−1
) =

R∑

q = 1

P
(
εr

t, ε
q
t−1|Zt−1

)

=
R∑

q = 1

P
(
εr

t |εq
t−1, Zt−1

)
P
(
ε

q
t−1|Zt−1

)
. (1)

However, given the fact that the event εq
t−1 has occurred at

time t − 1, it makes the previous measurements matrix Zt−1

irrelevant. In other words, occurrence of the event εq
t−1 con-

veys exactly the same amount of information as the joint event
(ε

q
t−1, Zt−1). Accordingly, (1) reduces to the simpler form

P
(
εr

t |Zt−1
) =

R∑

q = 1

P
(
εr

t |εq
t−1

)
P
(
ε

q
t−1|Zt−1

)
. (2)

The conditional probability P(εq
t−1|Zt−1) is the output of the

tracking filter working on resolution cell q at time t − 1. We
also recognize {P(εr

t−1|εq
t−1)}q,r as the set of probabilities that

event εr
t follows event εq

t−1. This set of probabilities is referred to
as the transition matrix of the tracker, the formulation of which
exploits the statistical model of target motion as supplied by the
radar-scene analyzer. It is noteworthy that the less agile the tar-
get is, the smaller the jumps the target is expected to make in
the search space S, thereby causing the transition matrix to be
more sparse. In any event, given the tracking filter output at
time t − 1 and the transition matrix, we may use (2) to compute
the output of the corresponding tracking predictor at time t.

TRACKING FILTER
Consider next the issue of computing the output of the track-
ing filter at time t, which is defined by the posterior probability
P

(
εr

t |Zt
)
. Applying Bayes’ rule to this probability yields

P
(
εr

t |Zt
) = p

(
Zt|εr

t

)
P

(
εr

t

)

p(Zt)
, (3)

where p(Zt|εr
t) is the conditional probability density function

of the current measurements matrix Zt given the occurrence
of event εr

t , and P(εr
t) is the prior probability of that event.

The probability density function p(Zt) in the denominator is
the evidence, which acts merely as a normalizing function.
Since, by definition, Zt = (zt, Zt−1), we may rewrite (3) by
expanding the numerator: 

P
(
εr

t |Zt
) = p

(
zt, Zt−1|εr

t

)
P

(
εr

t

)

p(Zt)

= p
(
zt|εr

t, Zt−1
)

p
(
Zt−1|εr

t

)
P
(
εr

t

)

p(Zt)
. (4)

Recognizing that the occurrence of event εr
t makes past meas-

urements Zt−1 irrelevant, we may simplify (4) as 

P
(
εr

t |Zt
) = p

(
zt|εr

t

)
p
(
Zt−1|εr

t

)
P
(
εr

t

)

p(Zt)
. (5)

The first term p(zt|εr
t) in the numerator of (5) is the probability

density function of measurement zt, given that there is a target
in cell r at time t. The second term p(Zt−1|εr

t) is computed by
using the recursive formula

p
(
Zt−1|εr

t
) = p

(
zt−1, Zt−2|εr

t
)

=
R∑

q = 1

p
(
zt−1|εq

t−1

)
p
(
Zt−2|εq

t−2

)
P

(
ε

q
t−1|εr

t
)

(6)

where, as before, p(zt−1|εq
t−1) is input from the radar-scene

analyzer and p(Zt−2|εq
t−1) is the one-step delayed version of

p(Zt−1|εr
t); hence the reference to (6) as a recursive formu-

la. The matrix of probabilities {P(ε
q
t−1|εr

t)}q,r is the inverse
transition matrix, which is defined by the probabilities that
event εt−1

q preceded event εr
t ; the term inverse is used here

merely to imply the role reversal of these two events with
respect to the transition matrix under (2). The following
two points are noteworthy: 

■ The recursive formula of (6) is identical to the hidden
Markov model (HMM) filter for a Markov chain {εt} with tran-
sition probabilities {P(ε

q
t−1|εr

t)}.
■ Given the posterior probability distribution of (4), the con-
ditional mean estimate (i.e., minimum mean-square esti-
mate) of the event εr

t over the entire search space S can be
computed as the summation 

∑R
r = 0 εr

tP(εr
t |Zt).

We may also compute the conditional probability density
function p(Zt−1|εr

t) in another way by recasting the recursive
formula of (6) as follows:

p
(
Zt−1|εr

t
) = p

(
Zt−2

)

P
(
εr

t

)
R∑

q = 1

p
(
zt−1|εq

t−1

)

× P
(
ε

q
t−1|Zt−2

)
P

(
εr

t |εq
t−1

)
. (7)

Then, substituting (7) into (5), we get the new formula for com-
puting the posterior probability at the output of the tracking filter

P
(
εr

t |Zt
) = p

(
zt|εr

t

)

p
(
z1, z2|Zt−2

)
R∑

q = 1

p
(
zt−1|εq

t−1

)

× P
(
ε

q
t−1|Zt−2

)
P

(
εr

t |εq
t−1

)
, (8)

where the probability P(ε
q
t−1|Zt−2) is the delayed version of

the tracking predictor output, and the probabilities
{P(εr

t |εq
t−1)}q,r are elements of the transition matrix.
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On the basis of (2) and (8), we may now construct the block
diagram of Figure 2 for the Bayesian direct filtering system.
The diagram is in the form of a closed-loop feedback system
that operates by propagating a state vector of probabilities
from one iteration to the next. Most important, the right rela-
tionship must be established between the radar parameters
and statistical characteristics of clutter and target-plus-clutter
for the tracker to maintain a stable operation.

TRACKING SMOOTHER
An attractive feature of the Bayesian tracker as described herein
is the fact that it is straightforward to make its operation condi-
tional on both past and future spectral measurements. The
result of this expansion is a target tracking smoother, for which
the output is expressed as

P
(
εr

t |zt, Zt−1, zt+1
) = p

(
zt|εr

t

)
p
(
Zt−1|εr

t

)
p
(
zt+1|εr

t

)
P

(
εr

t

)

p
(
zt, Zt−1, zt+1

) .

(9)

The factorization of terms in the numerator of (9) assumes
that the radar is treated as a first-order Markov model, in
which case the conditional dependence of the distribution of
past measurements Zt−1 on the future measurements zt+1

may be ignored; that is, we may set p(Zt−1|εr
t, zt+1) equal to

p(Zt−1|εr
t).

The additional factor p
(
zt+1|εr

t

)
in the numerator of (9) is

computed by running the right-hand side of the recursive 
equation (6) backwards in time [2], [3]. Thus, whereas the
target-tracking filter operates in the forward direction only,
the target-tracking smoother operates in the forward as well
as backward direction. Accordingly, decisions made on possi-
ble targets using the tracking smoother contain more infor-
mation than the corresponding tracking filter and may
therefore be more reliable. However, this improvement in
performance is gained at the expense of two factors:
increased computational complexity
and nonreal time operation. 

EXPERIMENTAL RESULTS: 
CASE STUDY OF SMALL TARGET
IN SEA CLUTTER
In [2] and [3], the performance of the
Bayesian target detector is evaluated
using real-life radar data under vary-
ing conditions. The data were collect-
ed by means of the McMaster IPIX
radar, which is a highly configurable
coherent multifunction X-band radar
built specifically for research purpos-
es. For a subset of the database col-
lected at a site in Dartmouth (Nova
Scotia), the radar was operated in the
dwell mode with a l◦ pencil beam and
fixed radio frequency of 9.39 GHz.

The radar was mounted about 30 m above sea level, with the
target of interest being located at about 2.5 km offshore. The
target was a sphere (1 m in diameter) made up of wire covered
in foam. Radar range was sampled at 15 m intervals, obtained
by using a 200 ns rectangular pulse. (The actual range resolu-
tion of the radar was 30 m.) The pulse-repetition frequency
(PRF) was 2,000 Hz, but the pulse alternated between hori-
zontal (H) and vertical (V) polarization, so the effective single-
polarization PRF was 1,000 Hz. For each pulse, both H and V
polarizations were recorded simultaneously, resulting in a
matrix of four possible transmit/receive polarizations: HH,
HV, VH, and VV. For each combination in the matrix, the
amplitude and phase of the radar returns were stored in the
form of in-phase (I) and quadrature (Q) components. (To pro-
mote further research in the radar area, we have created a
comprehensive Web site has been created from which IPIX
radar data sets are available. For details of the site, see
http://soma.mcmaster.ca/ipix.)

In [3], three data sets from the Dartmouth database were
used to test the Bayesian target detector. The results pertain-
ing to one of those datasets is reproduced in Figure 3. The
upper part of the figure displays the Doppler-time image of
the raw radar dataset, using a 64-sample sliding window. The
lower part of the figure displays the resulting output of the
Bayesian direct tracking smoother. Each pixel in the image
represents the probability of a target being present in the
corresponding resolution cell: the darker the pixel, the high-
er the probability of target occurrence. Note also that the
dark traces included along the 500 Hz-line indicate the
points in time where the target was invisible to the radar or
when the radar failed to detect the target.

Figure 3 and several other results reported in [3] attest to the
effectiveness of the Bayesian direct tracker. In particular, even
for a dataset with an average target-to-clutter power ratio as low
as −7 dB, Figure 3 clearly demonstrates the visibility of the tar-
get most of the time. 

[FIG2] Block diagram of the Bayesian direct filtering system.
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PRACTICAL IMPLICATIONS OF THE BAYESIAN 
TARGET TRACKER
To the best of my knowledge, the Bayesian target tracker
described in detail in [2] and [3] and highlighted herein is
the first study on the feasibility of direct target-tracking
without intermediate detections. The use of a Bayesian
approach to direct tracking, combined with complete
reliance on soft decisions (i.e., avoiding hard decisions
through intermediate detections), has some important prac-
tical implications.

■ Unlike hard decisions, the soft decisions made by the
Bayesian target-tracker preserve the information content of
the radar returns; this approach follows the principle of infor-
mation preservation learned from Shannon’s information
theory [7].
■ The Doppler-time image produced by the Bayesian
direct target tracker makes it possible for the radar to see
the motion of the target in a manner comparable to the
human eye. Indeed, we conjecture that an experienced
human operator could not do a better job of following the
target than the Bayesian tracker, especially so when the
tracker is operated in the smoothing mode; in this mode,
the tracker exploits the combined benefit of forward and
backward computations.
■ The basic idea behind the Bayesian approach is to view
the information contained in the radar image as a proba-
bility distribution that characterizes the likelihood of a
particular resolution cell containing a target. The distribu-
tion, in the form of a posterior probability density func-
tion, is determined in part by the statistical structure of
the radar scene (i.e., the outside world) and in part by the
way in which echoes from the world are actually encoded
by the radar itself. Accordingly, the Bayesian approach dis-
tinguishes itself from other approaches by invoking an
explicit statistical structure of the world which, in reality,
is a fundamental necessity.
■ The edited book [8] presents a number of theoretical
frameworks for studying visual perception which, in varying
degrees, are all founded on Bayesian principles. In a way, this
book lends further support to the Bayesian radar-target track-
er, the theory of which is embodied in (1)–(9), depending on
the mode of operation.

Using two different real-life radar data
sets and computer-simulated data, a
comparative evaluation of the Bayesian
approach to target-detection-through-
tracking has been made against a new
detection strategy called the correlation
anomaly receiver that follows from the
theory of stochastic differential equations
[5]. The results of this evaluation, report-
ed in [9], show that the Bayesian receiv-
er’s performance is superior to that of
the correlation anomaly receiver.

ADAPTIVE RADAR ILLUMINATION
As it stands, there is no optimization being performed on the pos-
terior probability distribution P(εr

t |Zt) computed by the Bayesian
target tracker [10]. The practical issue with adaptive radar illumi-
nation (transmission) is how to observe past radar returns and
extract useful information in order to decide or select the radar
waveform for the next transmission in some optimal fashion.

In an implicit sense, the present spectral measurements at
time t, denoted by zt and the past measurements denoted by Zt−1,
are all dependent on the transmitted signal. This dependence sug-
gests that the whole radar system can be made adaptive by adjust-
ing certain parameters in the transmitted signal in response to
the probabilistic decisions made by the Bayesian tracker on the
environment under surveillance. Note however that by doing so,
the radar system assumes the form of a stochastic control system
involving a state-space model governed by the posterior distribu-
tion of (4); the optimal solution to such partially observable sto-
chastic-control problems is NP hard. Fortunately, there are
suboptimal procedures such as reinforcement learning that can
yield acceptable solutions; this issue is discussed later.

There are many ways in which parameters of the transmitted
signal can be adjusted [11]. One practical way is to use burst
waveforms, with each burst made up of a sequence of uniformly
spaced, nonoverlapping subpulses of fixed duration. The pulse
amplitudes are held constant for two reasons: unforeseen diffi-
culties with dynamic range requirements are avoided and the
target-to-clutter power ratio may not be sensitive enough to
pulse-amplitude adjustments.

The logical strategy is then to adjust the phase of each trans-
mitted RF pulse in accordance with feedback sent to the trans-
mitter from the receiver. Here we have the choice of a phase
response that varies with time according to a square law that
results in linear frequency modulation (FM) or a cubic law that
results in nonlinear FM. Both of these configurations are well
known for their pulse-compression characteristics, with the
nonlinear FM being more effective than the linear FM [12].

SIMULATION EXPERIMENTS
IN SUPPORT OF ADJUSTABLE FM
In [13] and [14], DeLong and Hofstetter describe an adaptive
transmission strategy that uses the above-mentioned scheme
of burst waveforms. Their detailed theoretical study was in
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[FIG3] (a) A 64 sample sliding window time-Coppler image of raw radar data set 3 in [3]. (b)
The output of the Bayesian tracking smoother; each pixel represents the pobability of a
target in the corresponding resolution cell.
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two parts: the first one published in 1967 investigated the use
of adjustable pulse amplitudes and the second one published
later in 1969 focused on the use of adjustable pulse phases
with limited dynamic range. For both studies, they used the
signal-to-interference ratio as
the index of performance, with
interference being composed
of clutter and receiver noise.
For performance optimization,
they used a procedure based
on the Karush-Kuhn-Tucker
theorem [15]. The conclusions reported by DeLong and
Hofstetter in those two early, but still very much valid, papers
may be summarized as follows:

■  Adjustment of phase is a more practical approach than
amplitude for the design of adaptive radar transmitters.
■ The use of constant amplitude, quadratic-phase burst
waveforms provides a significantly better ambiguity pattern
than the corresponding constant-amplitude, zero-phase burst
waveforms.
These findings have been confirmed in simulation experi-

ments reported in [16], using the following system parameters:

Burst waveform: 32 subpulses
Single-pulse signal-to-interference ratio: 5 dB
Clutter-to-target cross-section ratio: 100

In [16]–[18], the Delong-Hofstetter algorithm using con-
stant-amplitude, square-phase burst waveforms was found to
reach a peak signal-to-interference ratio of 16.9 dB after 30 iter-
ations of the algorithm; the performance of this system is
almost equivalent to perfect clutter suppression in an environ-
ment highly dominated by clutter.

ECHO-LOCATION IN BATS
From the introductory section, we recall that a cognitive radar
system embodies three fundamental ingredients:

■ learning from the environment through experience
■ adjustment of the transmitted signal in an intelligent 
manner
■ feedback from the receiver to the transmitter to make this
adjustment possible.
All these three features are part and parcel of the echo-

location system of a bat. Accordingly, there is much that we
can learn from the echo-location system of a bat [19]–[22].
Most echo-locating bats are blind. (We say “most” because not
all species of bats are blind; note also that not all bats use echo-
location.) To see the world around it, the bat uses sonar, which
is an active echo-location system. In addition to providing
information about how far away a target (i.e., flying insect) is,
the bat’s sonar conveys information about the relative velocity
of the target, the size of various features of the target, and
azimuth and elevation of the target [21]–[23]. The complex
neural computations needed to extract all this information
from the target echo occur within a brain the size of a plum.

Indeed, an echo-locating bat can pursue and capture its target
with a facility and success rate that would be the envy of a radar
engineer. How then does the bat perform all these remarkable
tasks? The answer to this fundamental question lies in the fact

that soon after birth, the bat
uses its innate hard-wired brain
to build up rules of behavior
through what we usually refer
to as experience, hence the
remarkable ability of the bat for
echo-location.

The bat uses its mouth (or nose) to broadcast echo-location
sounds and its auditory system as the sonar receiver. The
emitted sounds consist of burst waveforms whose character-
istics are highly diverse, varying with both species and being
situation specific. The transmitted sound characteristics are
summarized here:

Duration: 0.3 to 300 ms
Frequency: 12 to 200 kHz
Structure: FM component, 

or constant-frequency (CF) component 
followed by FM component.

The CF component can be single or multiple harmonic. The
FM component can be of a downward or upward kind, with the
FM sweep varying linearly or nonlinearly with time. The use of
FM is intended to improve the echo-location system’s resolution
capability of the bat. (It is noteworthy that an echo-location bat’s
emitted sounds consist of burst waveforms just as the adaptive
transmission strategy used in the DeLong-Hofstetter algorithm
consists of burst waveforms.)

Broadly speaking, the adaptive behavior of bats may be cate-
gorized as follows [21]: 

■ Velocity-dependent adaptation, which involves adjustment
of the transmitted sound frequency; this form of adaptation is
most salient in species of CF-FM bats. These CF-FM bats also
appear to make adjustments in temporal patterning as they
close in on their targets.
■ Range-dependent adaptation, which involves adjustment
of the emitted-sound duration, bandwidth, and repetition
rate; this second form of adaptation is most salient in bats
using only FM. These bats also appear to make adjustments in
the transmitted sound bursts during target approach.
Echoes from targets (i.e., insects) are represented in the

auditory system by neuronal activities that are sensitive to dif-
ferent combinations of acoustic inputs produced in response
to the transmitted sound bursts. In particular, three principal
dimensions of the bat’s auditory representation have been
identified [19]:

■ echo frequency, which is initially encoded in the auditory
periphery cochlea by place in the cochlear
■ echo amplitude, which is encoded by the neuronal
responses under the previous and other neurons tuned to
different dynamic ranges in the central nervous system

THE SELECTION OF WAVEFORMS
TO BE USED FOR ADAPTIVE
RADAR TRANSMISSION IS
APPLICATION DEPENDENT.



■ echo delay, which is encoded through neuronal computa-
tions that produce target-range tuning responses.
There are two principal (neuronal) computations that are

performed by the bat’s brain for image-forming purposes. One
is the spectrum of the incoming echo, which is intended for
the extraction of target shape.
The other is delay in the
received echo with respect to
the transmitted sound bursts,
which is intended for the
extraction of target range. To
carry out these computations,
frequency-based information contained in the incoming echo
spectrum is converted into estimates of the spatial (time)
structure of the target.

In short, the echo-location system of a bat is very plastic, in
that the parameters of the transmitted sound bursts can be
changed considerably during the different phases of the target-
pursuit sequence. We are therefore justified to view the echo-
location system of a bat as physical proof (albeit in
neurobiological terms) of cognitive radar.

DISCUSSION
Three important conclusions can be drawn from the presenta-
tions made in this article.

1) Intelligence is a necessary requirement for the radar to
be cognitive. A striking difference is discernible between the
presentations we have made on adaptive radar illumination
and echo-location in bats. Simply put, in signal processing
terms, the echo-location systems of bats are far more plastic

than the adaptive radar systems that are currently in use or
being contemplated. This important point is best illustrated
by the spectograms shown in Figure 4, which were produced
by four different bat species in their respective target
(insect)-pursuit sequences. The significant characteristic that

is immediately apparent from
this figure is that the trans-
mitted signal duration
decreases and the burst repeti-
tion rate increases as the bat
gets closer to its target. In
doing this, the bat is using

acquired knowledge of the distance from its target to adjust
the parameters of its transmitted sound bursts. For a radar
system to be cognitive, therefore, it is a fundamental necessi-
ty for the radar transmitter to learn from continuing interac-
tions with the environment and intelligently use the
information extracted by the receiver on targets under sur-
veillance, all of this being done on the fly during the different
phases of the target-track sequence.

2) Feedback from the receiver to the transmitter is the facili-
tator of intelligent signal processing. We say feedback is the
facilitator of intelligence, because it is through feedback from
the receiver to the transmitter that cognitive radar is enabled to
learn from interactions with the environment. More is said on
this issue later in “Learning.”

3) The preservation of information in radar returns is of
crucial importance to receiver performance. The results pre-
sented earlier on the Bayesian target-tracker emphasize the
signal processing power of the Bayesian approach. This

approach is the only statistical
approach, in which a model of the
received signal accounts for two fac-
tors contributing to the specifica-
tion of information:

■ statistical nature of interfer-
ence (i.e.,  radar clutter and
noise)

■ explicit statistical structure of
the radar environment (i.e., out-
side world), including targets.
In the past, the Bayesian

approach has been criticized for
requiring a model that includes a
statistical structure of the radar envi-
ronment. In response to such criti-
cism, we merely have to emphasize
that if we are to account for the
physical realities that are responsible
for the generation of radar returns,
then the inclusion of a statistical
structure of the radar environment
is a fundamental requirement for
preserving the information content
of the received signal.
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[FIG4] Spectrograms of sonar signals produced by four different species of bats as they
advance from the search to approach and finally to the terminal phase of insect pursuit.
(Reproduced from [20] with permission of the University of Chicago Press.)
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LEARNING
Throughout this article, we have emphasized that learning is a
basic ingredient of cognitive radar. In a generic sense, the learn-
ing process can take two different forms: offline, and online.

Through offline learning, knowledge is acquired about the
environment and then embedded in the receiver. In the radar
context, an established way of accomplishing this acquisition
is to collect real-life data by
conducting ground-truthed
experiments on the environ-
ment under varying condi-
tions. Then, by performing
statistical analysis on the radar
data and formulating models
on clutter and targets, the
acquisition of knowledge of
the environment is accomplished; see, for example [23] and
[24]. In any event, the offline learning takes place through the
intervention of the experimenter.

Among the many different online learning procedures,
reinforcement learning [25] stands out as the procedure best
suited for cognitive radar. In the modern approach to rein-
forcement learning, also referred to as neurodynamic pro-
gramming [26], Bellman’s dynamic programming (rooted in
control theory) provides the theoretical foundation of the pro-
cedure. However, Bellman’s dynamic programming suffers
from the curse of dimensionality, which limits its practical
utility. Neurodynamic programming overcomes this limitation
by using a neural network for the approximation of dynamic
programming in a physically realizable manner. Stated in sim-
ple terms, neurodynamic programming enables a learning sys-
tem to do two things [26]:

■ make good decisions by observing the system’s own behav-
ior, which is achieved by using Monte Carlo simulations in an
offline manner
■ improve the system’s actions through a built-in reinforce-
ment mechanism, which is achieved by using iterative opti-
mization in an online manner.
The net result is a learning procedure that permits cognitive

radar to learn through interactions with the environment on a
continuing basis in a way which, loosely speaking, mimics the
way in which the echo-location bat learns from its environment.

APPLICATIONS
A discussion of cognitive radar would be incomplete without
some applications where it has the potential to make a difference.
In what follows, we address two applications of cognitive radar,
one dealing with multifunction radars that are expensive and the
other dealing with noncoherent radars that are inexpensive.

MULTIFUNCTION RADARS
Thanks to continuing advances and improvements on two
fronts, namely, phased-array antennas and computers, multi-
function radars are fast becoming, if not already, the norm in
building sophisticated radar systems. For example, the radar

may have to deal with a fading target due to the presence of
multipath produced by close proximity of the target (e.g., sea-
skimming missile) to the sea surface in a hostile marine envi-
ronment. One way of mitigating the fading problem is to
increase the dwell time in order to track the target with ade-
quate accuracy. In such an environment, we may identify two
problems that require serious attention:

■ agility, which mandates the
use of phased-array antennas
oriented to provide 360◦ cover-
age (e.g., four arrays at 90◦ with
respect to each other)
■ fast response, which is
attained by using powerful
computers that enable the
radar to adapt its transmission

waveforms so as to detect, track, and paint the target rapid-
ly enough for the engagement to occupy no more than 30 s
to couple of minutes.
Typically, while attending to the fading target, the radar is

also required to handle other threatening targets. The radar is
therefore faced with a new problem, namely, resource manage-
ment [27], [28]. Neurodynamic programming provides a princi-
pled approach for a solution (albeit suboptimal but perhaps
adequate) to the resource management problem.

NONCOHERENT RADAR NETWORK
For an entirely different application that could benefit from the
use of cognitive radar, consider the international border-security
problem. To be more specific, consider the Great Lakes St.
Lawrence Seaway; there are two challenging problems with this
large open border between the United States of America and
Canada [29]:

■ the protection of assets and populations of people from
terrorism
■ the prevention of illegal crossings across the border.
A cost-effective, all-weather, and all-day solution to both of

these challenges is a cognitive noncoherent radar network. The
network would be made up of inexpensive commercial off-the-
shelf marine radars, which are distributed across the border. The
only discriminant available for surveillance with such simple
radars is amplitude, which severely limits the capability of the
radar to detect noncooperative targets with small radar cross-
section in the presence of lake clutter. To mitigate this serious
problem, Weber et al. [29] depart from conventional radar signal
processing by purposely setting low detection thresholds.
Naturally, the false-alarm rates are raised to levels higher than a
conventional processor. But, most importantly, the noncoopera-
tive small targets are now detectable. Then through the use of a
sophisticated tracking algorithm, the real targets are extracted
and the false-alarm rates are reduced to an acceptable level.

Given a network of such noncoherent radars, which also
incorporates a central base station, the real-target tracks
computed by the component radars are transmitted by a com-
munication channel (wireline or wireless) to that station.

AN ECHO-LOCATING BAT CAN PURSUE
AND CAPTURE ITS TARGET WITH 
A FACILITY AND SUCCESS RATE 
THAT WOULD BE THE ENVY OF 

A RADAR ENGINEER.



Consequently, we have yet another new problem, namely, multi-
sensor fusion. Given the limited computing resources at the
base station, the challenge here is how to design a cognitive
radar network that produces a map in real-time for the entire
Great Lakes St. Lawrence Seaway, which identifies the tracks
of all noncooperative targets operating therein and does so in
the most reliable manner possible.

In both of the applications addressed herein, another
extremely challenging issue is that of knowing how to define a
metric by means of which it can be said that the task in question
has been accomplished. Stated in another way, what is the
essence of the description of the environmental scene that is
under surveillance? The traditional radar specifications, based
on the probability of detection and the problem of false alarm
(which are never measured anyway in a real-time setting) are
unsuitable. Rather, we need a new metric that addresses specifi-
cally what the end user needs to see. The formulation of this
metric is further exasperated when the application at hand
involves several tasks and the tasks have to be prioritized. Here
again, a cognitive approach that learns over time may well pro-
vide an answer, as it is often the case with humans [30].
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