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1. Primary Objectives of the
Software Testbed

• Flexibility to accommodate different
configurations and different applications

• Experimental study of the emergent
behaviour of a cognitive radio network
under varying operating and
environmental conditions for both:

(i)   Homogeneous networks
(ii)  Heterogeneous networks
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2. The Major Functional Blocks of the
Testbed at the Receiving End: Spectrum
Sensing

• Desirable properties of the spectrum
sensor:

(i) It is nonparametric
(i.e., model-independent)

(ii) It provides an accurate assessment of
the local neighborhood in terms of
• distinguishing features of the

environment;
• spatio-temporal information, capable

of creating the sense of attention

(iii)  It is reliable

(iv)  It is near-optimal (in its information-
gathering capability) in the maximum
likelihood sense
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Spectrum Sensing (continued)

The method of choice that satisfies all four
requirements:

THE MULTITAPER METHOD
(David Thomson, 1982)

• Through the use of multiple windows, (based on
an orthogonal set of Slepian sequences), MTM
resolves the bias-variance dilemma.

• The MTM is expandable into a space-time proc-
essor that provides:

(i) estimate of the average power at each
frequency;

(ii) spatial distribution of interferers;
(iii) multitaper coefficients of interferer’s

waveforms.

• Combined with the Loève transform, it extracts
modulation-based features: cyclostationarity.
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Figure 1: The MTM applied to wideband ATSC-Digital televi-
sion signals
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Figure 2: Available bandwidth resolving capability of the MTM
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Figure 3:  The periodogram applied to ATSC-DTV signal
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Figure 4: Available resolving capability of the periodogram
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Figure 5: Comparison of the MTM and periodogram spectra
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3. The Major Functional Blocks of the
Testbed at the Receiving End:
Predictive Modeling

• Requirement:
Enable a secondary user to determine the
likelihood that a spectrum hole remains
available for communication for a desired
duration into the future.

• Temporal difference (TD) learning: An
approximate form of dynamic program-
ming.

• TD networks expand on the learning capa-
bility of TD-learning.
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3. Major Functional Blocks of the Software
Testbed at the Transmitting End:
(i) Transmit-power Control

• A cognitive radio network is a hybrid dynamic system
o Continuous dynamics
o Discrete events

• Theoretical analysis of the resource allocation problem
with consideration of both equilibrium and transient
behaviours.

• Formulating the transmit-power control problem within
the iterative waterfilling algorithm  (IWFA) framework:

o Robust non-cooperative game
o Max-min optimization
o Worst-case analysis regarding a specified
   uncertainty-set

• Modelling the network as a constrained piecewise affine
(PWA) system using a variational inequality (VI) reformu-
lation of IWFA and theory of projected dynamic systems
(PDS).

• Providing tools from control theory to facilitate the analy-
sis of sensitivity and stability of the whole network, consid-
ering uncertainty and multiple time-varying delays.
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(i) Transmit-power Control (continued)

Figure 6: Resource allocation results of simultaneous IWFA
and robust IWFA, when 2 new users join a network of 5
users, a subcarrier disappears, and interference gains are
changed randomly to address the mobility of the users.
Intel, Nov. 6-7/08, Haykin 13



The Major Functional Blocks of the Testbed
at the Transmitting End:
(ii) Dynamic spectrum management (DSM)

• Utilization of neurobiological principles of
self-organization, with emphasis on learn-
ing.

• Emphasis on cognitive radio information
on a local-neighbourhood basis.

• Complexity is proportional to the user-
density, and therefore scalable to any size.

• Provision of a stable solution with less
complexity.

• Suboptimal but satisfactory solution.
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4. Receiving and Transmitting Ends
Viewed Together

• Rationale Behind the TPC and DSM:

Both are rooted in information.

(i) TPC exploits iterative waterfilling,
rooted in Shannon’s rate distortion
theory.

(ii) DSM exploits iterative inverse-
waterfilling, which combines
competition and cooperation among
users.
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Receiving and Transmitting Ends
Viewed Together (continued)

• Reinforcement Learning: Interaction with
the environment

(i) The receiver perceives the environment
by extracting multidimensional
information on the environment:
• spectrum holes across the frequency

band
• average power of each spectrum hole
• features identifying the user of each

spectrum hole
• directions of interferers

(ii) The transmitter acts on this information
to establish reliable communication
across a link that connects the CR trans-
mitter (at one end) to the CR receiver
(at the other end)

(iii) Net result: Punish or reward.
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5. Emergent Behaviour of Cognitive
Radio Networks

• The network viewed as a global closed-

loop feedback system, embodying all four

functional blocks of the testbed, feedback

channel, and communication channel
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Emergent Behaviour of Cognitive
Radio Networks (continued)

• State of the World as seen by a user of the
network:

(i) Spectrum holes: directly observable
through the use of spectrum sensing
and predictive modeling at the
receiver.

(ii) Behavior of other users in the
network: Unobservable.

(iii) Partially observable world.
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Emergent Behaviour of Cognitive
Radio Networks (continued)

• Two kinds of emergent behaviour:

(i) Positive behavior: All users in the
network operate in an orderly
manner.

(ii) Negative behavior: One or more users
in the network act differently,
hence the emergence of disorder
leading to traffic jams, chaos, etc.
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Emergent Behaviour of Cognitive
Radio Networks (continued)

• Possible causes of Negative Behaviour:

(i) Homogeneous Networks

Number of users in excess of the
available number of spectrum holes
by a wide margin.

(ii) Heterogeneous Networks

Users in the network use different
software models for implementing the
functional blocks of the cognitive
radio.
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Emergent Behaviour of Cognitive
Radio Networks (continued)

• The Karush-Kuhn-Tucker (KKT)
conditions

(i) KKT conditions are satisfied
- Nash equilibrium

(ii) The KKT conditions provide a
window on the unobservable state
of the world.

• Criterion for detecting the onset of
negative behaviour:

• Nonlinear sequential state estimation
for tracking evolution of the KKT
conditions across time.
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Emergent Behaviour of Cognitive
Radio Networks (continued)

Possible Cure for Mitigating Negative
Behaviour:

(i) Pricing for the use of spectrum holes.

(ii) Collaboration among users of the network
- Reduced utilization of the spectrum.

There is No Free Lunch
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6. Summarizing Block Diagram of the
Software Testbed
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