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1. Introduction
Point-of-View Article, Proc. IEE
Nov. 2006.

I see the emergence of a new discipline, called Co

Systems1, which builds on ideas in statistical signal pro

control, and information theory, and weaves those we

into new ones drawn from neuroscience, statistical lea

game theory. The discipline will provide principled to

and development of a new generation of wireless

exemplified by cognitive radio and cognitive radar

effectiveness, and robustness as the hallmarks of perfor

1. S. Haykin, Cognitive Dynamic Systems, book under preparation.
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2.   A Simplistic View of Cognition

Figure 1. Human Cognitive Cycle in its most basic form
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3.  Cognitive Dynamic Systems De

A Cognitive Dynamic System is a complex sys
emergent behaviour.

It processes information over the course of time by
following functions:

• sense (perceive) the environment;
• learn from the environment and adapt to its stati
• build a predictive model on prescribed aspects of t
• develop rules of behaviour so as to act on (control

environment; and do all of this in real time for th
executing prescribed tasks, in the face of environ
uncertainties, efficiently and reliably in a cost-effe
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4.  Emerging Applications

Cognitive radio

Cognitive radar

Cognitive car
.
.
.

Cognitive Information Processing

Cognitive computation (including software)

Cognitive optimization
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Cognitive Radio Networks

Figure 2.  Basic signal-processing cycle, as seen by a single user (tra
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Figure 3.  Cognitive tracking radar
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5.   Foundational Disciplines Invol
  Cognitive Dynamic Systems

(i) Bayesian Theory

(ii) Information Theory

(iii) Control Theory:

• Nonlinear filtering
• Dynamic programming

(iv) Learning Theory

(v) Complexity Theory
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6. Global Feedback
A Facilitator of Computational Intelligence

• The human brain is a living example of a cogni
system with global feedback in many of its part
visual system, auditory system, or motor contro

• Global feedback is responsible for the coordina
constituents of a cognitive dynamic system.

• The emergent behaviour of a cognitive dynamic
the global feedback.

• Global feedback is an inherent property of all c
dynamic systems, but global feedback by itself 
dynamic system cognitive.
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7. Why sub-optimality should  be
 objective of cognitive dynamic 

• Optimality of performance versus robustness of beh
A challenge in system design.

• Global optimality of a cognitive dynamic system is n
feasible:

• Large-scale nature of the system
• Infeasible computability
• Curse-of-dimensionality

Hence, the practical requirement of having to settle
solution of the system design

• Trade-off global optimality for computational tracta
behaviour.
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Criterion for sub-optimality

DO AS BEST AS YOU CAN, AND NOT MOR

• This statement is the essence of what the human
daily basis:

Provide the “best” solution in the most relia
fashion for the task at hand, given limited r

• Key question: How do we define “best”?
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8. The Bayesian Filter: A powerfu
cognitive information processin

Problem statement:

Given a nonlinear dynamic system, estimate the h
system in a recursive manner by processing a sequ
observations dependent on the state.

• The Bayesian filter provides a unifying framework 
solution of this problem, at least in a conceptual sen

Unfortunately, except in a few special cases, the Bay
implementable in practice -- hence the need for app
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Bayesian Filter (continued)

State-space Model

1. System (state) Model

2. Measurement model

where t = discrete time
xt = state at time t
yt = observation at time t
ωt = dynamic noise

= measurement noise

xt 1+ a xt( ) ωt+=

yt b xt( ) νt+=

νt
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Bayesian Filter (continued)

Assumptions:

• Nonlinear functions  and  are known

• Dynamic noise ωt and measurement noise  are

independent Gaussian processes of zero mean a
covariance matrices.

a .( ) b .( )

νt
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Bayesian filter (continued)

Time-update equation:

where Rn denotes the n-dimensional state space.

Measurement-update equation:

where Zt is the normalizing constant defined by

p xt Yt-1( ) p xt xt-1( ) p xt-1 Yt-1( ) xt-1d

R
n∫={ {

                            Prior                   Old

                            distribution            posterior
                                                           distribution

{
Predictive
distribution

p xt Yt( ) 1
Zt
----- p xt Yt-1( )l yt xt( )=

Updated                                         Predictive                Likelihood
posterior                                        distribution             function
distribution

{ { {
Zt p xt Yt-1( )l yt xt( ) xtd

R
n

∫=



             17

f the Bayesian
r and both the

stically

cases, exact
 is not

e content with a
s

t Yt-1)
Salk Institute - Sept. 17, 2008(Haykin)

Bayesian Filter (continued)

• The celebrated Kalman filter is a special case o
filter, assuming that the dynamic system is linea
dynamic noise and measurement noise are stati
independent processes.

• Except for this special case and couple of other 
computation of the predictive distribution
feasible.

• We therefore have to abandon optimality and b
sub-optimal nonlinear filtering algorithm that i
computationally tractable.

p x(
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Bayesian Filtering (continued)

Two Approaches for Approximate Nonlinear Filter

1. Direct numerical approximation of the posterio
sense:
• Extended Kalman filter (simple and therefo
• Unscented Kalman filter
• Central-difference Kalman filter
• Cubature Kalman filter (New)

2. Indirect numerical approximation of the poster
sense:
• Particle filters:

Roots embedded in Monte Carlo  simulation
Computationally demanding
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Extended Kalman Filter

• Linearize the system model around the filtered 

and linearize the measurement model around t
estimate

• Attributes and Limitations

(i) The EKF is simple to implement

(ii) Estimation accuracy of the EKF is good for
 a mild sort; otherwise, it is often not accura

x̂t t 1–
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9. The Cubature Kalman Filter

(Arasaratnam and Haykin, IEEE Trans. Automatic Con
publication, 2008)

• At the heart of the Bayesian filter, we have to compu
whose integrands are expressed in the common form

(Nonlinear function) x (Gaussian functio

• The challenge is to numerically approximate the int
completely preserve second-order information abou
is contained in the sequence of observations yt

• The computational tool that accommodates this req
cubature rule.
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Cubature Kalman Filter (continued)

The Cubature Rule

• In mathematical terms, we have to compute an
generic form

• To do the computation, the key step is to make a change 
the Cartesian coordinate system (in which the vector x is
spherical-radial coordinate system:

x = rz subject to zTz = 1 and xTx = r2

where 0 < r < ∞

h f( ) f x( ) 1
2
---x

T
x– 

 exp xd

R
n

∫= {
Normalized
Gaussian
function of zero mean and
unit covariance matrix

{

Arbitray
nonlinear
function
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Recursive Cycle of the Cubature Kalman Filter

• The Kalman gain is computed as

where  is the inverse of the covariance matrix

• Upon receiving the new observation yt, the filtered estima
computed in accordance with the predictor-corrector formula:

• Correspondingly, the covariance matrix of the filtered stat
computed as

Updated posterior distribution

Gt Px y nt nt-1, Pyy,t t-1
1–

=

Pyy,t t-1
1–

Pyy,t t-1

x̂t t x̂t t-1 Gt yt ŷt t-1–( )+=

{ { { {
Updated             Old          Kalman    Innovations process
estimate          estimate       gain

Pt t Pt t-1 GtPy y t t-1, Gt
T

–=

p xt Yt( ) R xt x̂t t Pt t,;( )=
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Properties of the Cubature Kalman Filter

Property 1: The cubature Kalman filter (CKF) is a derivative-free o
estimator: It relies on integration for its operation.

Property 2: Approximations of the moment integrals are all line
adjustable parameters.

Property 3: Computational complexity of the cubature Kalman filte
n3, where n is the dimensionality of the state space.

Property 4: The cubature Kalman filter completely preserves seco
about the state that is contained in the observations.

Property 5: The cubature Kalman filter inherits properties of the
including square-root filtering for improved accuracy and reliability

Property 6: The cubature Kalman filter is the closest known direct
Bayesian filter, outperforming the extended Kalman filter and
Kalman filter:

It eases the curse-of-dimensionality problem
but, by itself, does not overcome it.
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10.  Supervised Learning

Training sample: {ut, dt}

Figure 4:  Block diagram of supervised learning machinery
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Concluding Remark

“Cognitive Dynamic System

are

A Way of the Future

in

The 21st Century
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Concluding Remarks (continued)

Two New Books to watch out for:

1. Neural Networks and Learning Machines
Simon Haykin
Prentice-Hall, 3rd edition
September 2008

2. Foundations of Cognitive Dynamic Systems
Simon Haykin
Cambridge University Press
(In preparation)
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