Foundations of Cognitive Dynamic Systems

Simon Haykin McMaster, University Hamilton, Ontario, Canada

email: haykin@mcmaster.ca Web site: http://soma.mcmaster.ca

Outline of The Lecture

- 1. Introduction
- 2. A Simplistic View of Cognition
- 3. Cognitive Dynamic Systems Defined
- 4. Global Feedback
- 5. Why Sub-optimality Should be the Objective of Cognitive Dynamic Systems?
- 6. The Bayesian Filter: A powerful tool for cognitive information processing
- 7. The Cubature Kalman Filter
- 8. Emerging Applications
- 9. Cognitive Radio
- 10. Cognitive Radar

Concluding Remarks

Acknowledgements

1. Introduction Point-of-View Article, Proc. IEEE Nov. 2006.

I see the emergence of a new discipline, called Cognitive Dynamic Systems¹, which builds on ideas in statistical signal processing, stochastic control, and information theory, and weaves those well-developed ideas into new ones drawn from neuroscience, statistical learning theory, and game theory. The discipline will provide principled tools for the design and development of a new generation of wireless dynamic systems exemplified by cognitive radio and cognitive radar with efficiency, effectiveness, and robustness as the hallmarks of performance.

^{1.} S. Haykin, Cognitive Dynamic Systems, book under preparation.

2. A Simplistic View of Cognition

Figure 1. Human Cognitive Cycle in its most basic form

3. Cognitive Dynamic Systems Defined

A Cognitive Dynamic System is a complex system, capable of emergent behaviour.

It processes information over the course of time by performing the following functions:

- *sense* (perceive) the environment;
- *learn* from the environment and adapt to its statistical variations;
- build a *predictive model* on prescribed aspects of the environment;
- develop *rules of behaviour* so as to act on (control) the environment; and do all of this in real time for the purpose of executing prescribed tasks, in the face of environmental uncertainties, *efficiently and reliably in a cost-effective manner*.

4. Global Feedback

A Facilitator of Computational Intelligence

- The human brain is a living example of a cognitive dynamic system with global feedback in many of its parts, be that the visual system, auditory system, or motor control.
- Global feedback is responsible for the coordination of different constituents of a cognitive dynamic system.
- The emergent behaviour of a cognitive dynamic system is due to the global feedback.
- Global feedback is an inherent property of all cognitive dynamic systems, but global feedback by itself will *not* make a dynamic system cognitive.

5. Why sub-optimality should be the objective of cognitive dynamic systems?

- Optimality of performance versus robustness of behaviour: A challenge in system design.
- Global optimality of a cognitive dynamic system is not practically feasible:
 - Large-scale nature of the system
 - Infeasible computability
 - Curse-of-dimensionality

Hence, the practical requirement of having to settle for a sub-optimal solution of the system design

• Trade-off global optimality for computational tractability and robust behaviour.

Criterion for sub-optimality

DO AS BEST AS YOU CAN, AND NOT MORE

• This statement is the essence of what the human brain does on a daily basis:

Provide the "best" solution in the most reliable fashion for the task at hand, given limited resources.

• Key question: How do we define "best"?

6. The Bayesian Filter: A powerful tool for cognitive information processing

Problem statement:

Given a nonlinear dynamic system, estimate the *hidden state* of the system in a recursive manner by processing a sequence of *noisy observations* dependent on the state.

• The Bayesian filter provides a **unifying framework** for the optimal solution of this problem, at least in a conceptual sense.

Unfortunately, except in a few special cases, the Bayesian filter is **not** implementable in practice -- hence the need for **approximation**.

Bayesian Filter (continued)

State-space Model

1. System (state) Model

 $\mathbf{x}_{t+1} = \mathbf{a}(\mathbf{x}_t) + \boldsymbol{\omega}_t$

2. Measurement model

 $\mathbf{y}_t = \mathbf{b}(\mathbf{x}_t) + \mathbf{v}_t$

where t = discrete time $\mathbf{x}_t = \text{state at time } t$ $\mathbf{y}_t = \text{observation at time } t$ $\boldsymbol{\omega}_t = \text{dynamic noise}$ $\boldsymbol{v}_t = \text{measurement noise}$

Bayesian Filter (continued)

Assumptions:

- Nonlinear functions $a(\cdot)$ and $b(\cdot)$ are known
- Dynamic noise ω_t and measurement noise v_t are statistically independent Gaussian processes of zero mean and known covariance matrices.

Bayesian filter (continued)

Time-update equation:

where R^n denotes the *n*-dimensional state space.

Measurement-update equation:

$$\underbrace{p(\mathbf{x}_t | \mathbf{Y}_t)}_{t} = \frac{1}{Z_t} \underbrace{p(\mathbf{x}_t | \mathbf{Y}_{t-1}) l(\mathbf{y}_t | \mathbf{x}_t)}_{t}$$

Updated posterior distribution

Predictive distribution

where Z_t is the normalizing constant defined by

$$Z_t = \int_{R} p(\mathbf{x}_t | \mathbf{Y}_{t-1}) l(\mathbf{y}_t | \mathbf{x}_t) d\mathbf{x}_t$$

7. The Cubature Kalman Filter

(Arasaratnam and Haykin, IEEE Trans. Automatic Control, June, 2009)

• At the heart of the Bayesian filter, we have to compute integrals whose integrands are expressed in the common form

(Nonlinear function) X (Gaussian function)

- The challenge is to numerically approximate the integral so as to completely preserve second-order information about the state x_t that is contained in the sequence of observations y_t
- The computational tool that accommodates this requirement is the *cubature rule*.

Cubature Kalman Filter (continued)

The Cubature Rule

• In mathematical terms, we have to compute an integral of the generic form

$$h(\mathbf{f}) = \int_{R^{n}} \mathbf{f}(\mathbf{x}) \exp\left(-\frac{1}{2}\mathbf{x}^{T}\mathbf{x}\right) d\mathbf{x}$$
(1)

Arbitray

Arbitray

nonlinear

function

function of zero mean and

unit covariance matrix

(1)

• To do the computation, the key step is to make a change of variables from the Cartesian coordinate system (in which the vector x is defined) to a spherical-radial coordinate system:

$$\mathbf{x} = r\mathbf{z}$$
 subject to $\mathbf{z}^T \mathbf{z} = \mathbf{1}$ and $\mathbf{x}^T \mathbf{x} = r^2$

where $0 \le r < \infty$

Recursive Cycle of the Cubature Kalman Filter

• The Kalman gain is computed as

 $\mathbf{G}_{t} = \mathbf{P}_{xy, nt|nt-1} \mathbf{P}_{yy,t|t-1}^{-1}$ where $\mathbf{P}_{yy,t|t-1}^{-1}$ is the inverse of the covariance matrix $\mathbf{P}_{yy,t|t-1}$.

• Upon receiving the new observation y_t , the filtered estimate of the state x_t is computed in accordance with the predictor-corrector formula:

 $\hat{\mathbf{x}}_{t|t} = \underbrace{\hat{\mathbf{x}}_{t|t-1}}_{\text{Old}} + \underbrace{\mathbf{G}_{t}(\mathbf{y}_{t} - \hat{\mathbf{y}}_{t|t-1})}_{\text{Innovations process}}$

• Correspondingly, the covariance matrix of the filtered state estimation error is computed as

 $\mathbf{P}_{t|t} = \mathbf{P}_{t|t-1} - \mathbf{G}_t \mathbf{P}_{yy, t|t-1} \mathbf{G}_t^T$

Updated posterior distribution

 $p(\mathbf{x}_t | \mathbf{Y}_t) = R(\mathbf{x}_t; \hat{\mathbf{x}}_{t|t}, \mathbf{P}_{t|t})$

Properties of the Cubature Kalman Filter

Property 1: The cubature Kalman filter (CKF) is a *derivative-free on-line sequential-state estimator*: It relies on integration for its operation.

Property 2: Approximations of the moment integrals are all *linear* in the number of functions used in the approximation.

Property 3: Computational complexity of the cubature Kalman filter as a whole, grows as n^3 , where *n* is the dimensionality of the state space.

Property 4: The cubature Kalman filter completely preserves second-order information about the state that is contained in the observations.

Property 5: The cubature Kalman filter *inherits properties of the linear Kalman filter*, including square-root filtering for improved accuracy and reliability.

Property 6: The cubature Kalman filter is the closest known direct approximation to the Bayesian filter, outperforming the extended Kalman filter and the central-difference Kalman filter:

It eases the curse-of-dimensionality problem but, by itself, does not overcome it.

8. Emerging Applications

Cognitive radio

Cognitive radar

Cognitive Signal Processing

Cognitive Control

Cognitive Information Processing

Cognitive computation (including software)

Figure 1. Basic signal-processing cycle, as seen by a single user (transceiver).

Spectrum Sensor

- **1.** Three Essential Dimensions of Sensing the Radio Environment:
 - Time
 - Frequency
 - Space
- 2. Nonparametric Integrated Multi-function Spectrum Sensor:
 - Heart of the System: Multi-taper method
 - Singular-value Decomposition
 - Loève transform

Figure 2: Block diagram of integrated multi-function spectrum sensor

10. Cognitive Radar

Figure 3: Cognitive tracking radar

Concluding Remark

"Cognitive Dynamic Systems"

are

A Way of the Future

in

The 21st Century

Concluding Remarks (continued)

Two New Books of interest:

1. Neural Networks and Learning Machines Simon Haykin Prentice-Hall, 3rd edition November 2008

 2. Foundations of Cognitive Dynamic Systems Simon Haykin Cambridge University Press (2009)

Acknowledgements

- Many thanks to my gifted group of outstanding Ph.D. students
- Deep gratitude to the Natural Sciences and Engineering Research Council (NSERC) of Canada for continued financial support