Cognitive Dynamic Systems

Simon Haykin McMaster University Hamilton, Ontario, Canada haykin@mcmaster.ca http://soma.mcmaster.ca

- 1. What is Cognition?
- 2. Cognitive Dynamic Systems Defined
- 3. Emerging Applications
- 4. Global Feedback
- 5. Why sub-optimality should be the objective of cognitive dynamic systems?
- 6. The Bayesian Filter: A powerful tool for cognitive information processing
- 7. Cubature Kalman Filter
- 8. Properties of the Cubature Kalman Filter
- 9. On-going Research Projects in My Laboratory
- 10. Concluding Remark

Acknowledgements

1. What is Cognition?

According to the Oxford English Dictionary: Cognition is

(Knowledge
Knowledge Acquisition
Knowledge Representation
Contextual Knowledge
Storage of Knowledge
(Perception
Sensing of the Environment
Adaptation to the Environment
Learning from the Environment
Dealing with Uncertainty:
1. Probabilistic Reasoning
2. Hypothesizing and
Decision-making
"The Bayesian framework"
Control
Approximate Dynamic
Programming
Energy Efficiency
Robustness

The human brain has all these attributes, and there is plausible evidence for the Bayesian framework -- hence the "Bayesian brain".

2. Cognitive Dynamic Systems Defined

A Cognitive Dynamic System is a system that processes information over the course of time by performing the following functions:

- *Sense* the environment;
- *learn* from the environment and adapt to its statistical variations;
- build a *predictive model* of prescribed aspects of the environment

and thereby develop *rules of behaviour* for the execution of prescribed tasks, in the face of environmental uncertainties, *efficiently and reliably in a cost-effective manner.*

3. Emerging Applications

Cognitive radio (Candidate for 5th generation wireless communications)

Cognitive radar

Cognitive car

Cognitive genome

- - •
- •

Cognitive optimization

Cognitive software

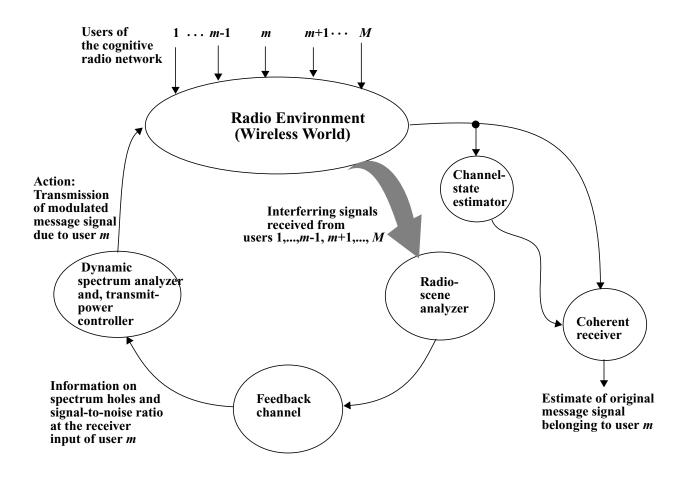
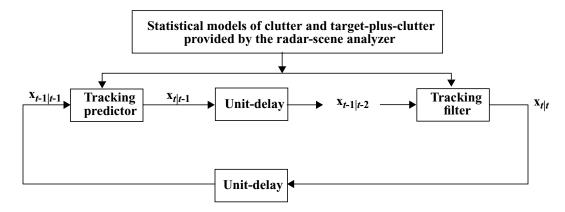


Figure 1: Cognitive signal-processing cycle for user *m* of cognitive radio network; the diagram also includes elements of the receiver of user *m*



<u>Notations</u>

<i>t</i> : discrete-time

 $\mathbf{x}_{t|t}$: filtered state vector of probabilities of targets being present in the search space at t given spectral measurements up to and including time t

The other data vectors in the diagram are similarly defined

Figure 2: Block diagram of the Bayesian direct filtering system

4. Global Feedback

"A Facilitator of Computational Intelligence"

- The human brain is a living example of a cognitive dynamic system with global feedback in many of its parts, be that the visual system, auditory system, or motor control.
- Global feedback is responsible for the coordination of different constituents of a cognitive dynamic system.
- Global feedback is an inherent property of all cognitive dynamic systems, but global feedback by itself will *not* make a dynamic system cognitive.

5. Why sub-optimality should be the objective of cognitive dynamic systems?

- Optimality of performance versus robustness of behaviour.
- Global optimality of a cognitive dynamic system is not practically feasible:
 - Infeasible computability
 - Curse-of-dimensionality
 - Large-scale nature of the system

Hence, the practical requirement of having to settle for a sub-optimal solution of the system design

• Trade-off global optimality for computational tractability and robust behaviour. **Criterion for sub-optimality**

DO AS BEST AS YOU CAN, AND NOT MORE

• This statement is the essence of what the human brain does on a daily basis:

Provide the "best" solution in the most reliable fashion for the task at hand, given limited resources.

• Key question: How do we define "best"?

6. The Bayesian Filter: A powerful tool for cognitive information processing

Problem statement:

Given a nonlinear dynamic system, estimate the *hidden state* of the system in a recursive manner by processing a sequence of *noisy observations* dependent on the state.

- The Bayesian filter provides a unifying framework for the optimal solution of this problem, at least in a conceptual sense.
- Unfortunately, except in a few special cases, the Bayesian filter is **not** implementable in practice -- hence the need for approximation.

Bayesian Filter (continued)

State-space Model

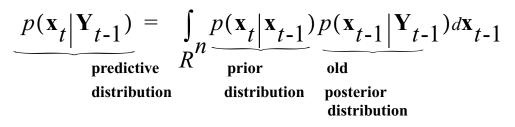
- 1. System (state) Model $\mathbf{x}_{t+1} = \mathbf{a}(\mathbf{x}_t) + \mathbf{\omega}_t$
- 2. Measurement model $y_t = b(x_t) + v_t$
 - where t = discrete time $x_t = state at time t$ $y_t = observation at time$ $\omega_t = dynamic noise$ $v_t = measurement noise$

Assumptions:

- Nonlinear functions a(.) and b(.) are known
- Dynamic noise ω_t and measurement noise v_t are statistically independent Gaussian processes of zero mean and known covariance matrices.

Bayesian filter (continued)

Time-update equation:



where R^n denotes the n-dimensional state space.

Measurement-update equation:

$$\underbrace{p(\mathbf{x}_t | \mathbf{Y}_t)}_{t} = \frac{1}{Z_t} \underbrace{p(\mathbf{x}_t | \mathbf{Y}_{t-1}) l(\mathbf{y}_t | \mathbf{x}_t)}_{t-1}$$

Updated posterior distribution Predictive distribution

Likelihood function

where Z_t is the normalizing constant defined by

$$Z_{t} = \int_{R}^{n} p(\mathbf{x}_{t} | \mathbf{Y}_{t-1}) l(\mathbf{y}_{t} | \mathbf{x}_{t}) d\mathbf{x}_{t}$$

Bayesian Filter (continued)

- The celebrated Kalman filter is a special case of the Bayesian filter, assuming that the dynamic system is linear.
- Except for this special case and couple of other cases, exact computation of the predictive distribution $p(\mathbf{x}_t | \mathbf{Y}_{t-1})$ is not feasible.
- We therefore have to abandon optimality and be content with a sub-optimal nonlinear filtering algorithm that is computationally tractable.

Bayesian Filtering (continued)

Two Approaches for Approximate Nonlinear Filtering

- **1.** Direct numerical approximation of the posterior in a local sense:
 - Extended Kalman filter
 - Unscented Kalman filter (Julier, Ulhmann and Durrant-Whyte, 2000)
 - Central-difference Kalman filter (Nörgaard, Poulson, and Ravn, 2000).
 - Cubature Kalman filter (Arasaratnam and Haykin, 2008).
- 2. Indirect numerical approximation of the posterior in a global sense:
 - Particle filters (Gordon, Salmond, and Smith, 1993)
 - Roots embedded in Monte Carlo simulation
 - Computationally demanding

Extended Kalman Filter

- Linearize the system model around the filtered estimate $\hat{\mathbf{x}}_{t|t}$, and linearize the measurement model around the predicted estimate $\hat{\mathbf{x}}_{t|t-1}$
- Attributes and Limitations
 - (i) The EKF is simple to implement
 - (ii) Estimation accuracy of the EKF is good for nonlinearities of a mild sort; otherwise, it is often highly suboptimal.

7. The Cubature Kalman Filter

(Arasaratnam and Haykin, IEEE Trans. Automatic Control, accepted for publication subject to revisions)

• At the heart of the Bayesian filter, we have to compute integrals whose integrand is expressed in the form

(Nonlinear function) X (Gaussian function)

- The challenge is to numerically approximate the integral so as to completely preserve second-order information about the state x that is contained in the sequence of observations
- The computational tool that accommodates this requirement is the *cubature rule* (Cools, 1997).

Cubature Kalman Filter (continued)

The Cubature Rule

• In mathematical terms, we have to compute an integral for the generic form

$$h(\mathbf{f}) = \int_{R^{n}} \mathbf{f}(\mathbf{x}) \exp\left(-\frac{1}{2}\mathbf{x}^{T}\mathbf{x}\right) d\mathbf{x}$$
(1)
Arbitray
nonlinear
function
Arbitray
nonlinear
function of zero mean and
unit covariance function

• To do the computation, the key step is to make a change of variables from the Cartesian coordinate system (in which the vector x is defined) to a spherical-radial coordinate system:

$$\mathbf{x} = r\mathbf{z}$$
 subject to $\mathbf{z}^T\mathbf{z} = 1$ and $\mathbf{x}^T\mathbf{x} = r^2$

where $0 \le r < \infty$

Cubature Kalman Filter (continued)

• We may thus express *I* as the radial integral

$$I = \int_0^\infty S(r) r^{n-1} \exp(-r^2) dr$$

where S(r) is defined by the spherical integral $S(r) = \int_{U_n} f(r\mathbf{z}) d\sigma(\mathbf{z})$

where $\sigma(.)$ is the spherical surface measure on the region

$$U_n = \{\mathbf{z}, \text{ subject to } \mathbf{z}^T \mathbf{z} = 1\}$$

 Working through a fair amount of mathematical details, we finally arrive at the desired *linear approximation*:

$$h(f) = \int_{R^{n}} \mathbf{f}(\mathbf{x}) \underbrace{N(\mathbf{x};\mathbf{0},\mathbf{I})}_{\text{Standard}} d\mathbf{x}$$

Gaussian function
$$\approx \sum_{i=1}^{2n} \omega_{i} \mathbf{f}\{\xi_{i}\}$$

where $\{\xi_i\}$ = cubature representations of the

state vector x.

$$\omega_i = \frac{1}{m}, \quad i = 1, 2, ..., m = 2n$$

• The set $\left\{\xi_{i}, \omega_{i}\right\}_{i=1}^{2n}$ constitutes the cubature points used to

numerically compute integrals of the form defined in Eq. (1).

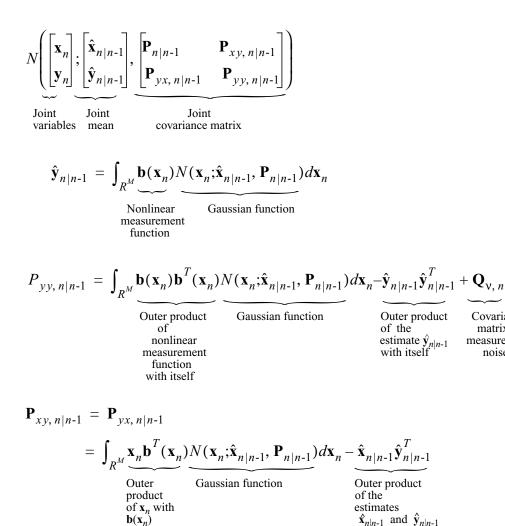
Parameter Updates of the Cubature Kalman Filter

Time update

$$\hat{\mathbf{x}}_{n|n-1} = \mathbf{E}[\mathbf{x}_{n} | \mathbf{Y}_{n-1}]$$

$$= \int_{\mathcal{R}^{M}} \underbrace{\mathbf{a}(x_{n-1}) N(\mathbf{x}_{n-1}; \hat{\mathbf{x}}_{n-1|n-1}, \mathbf{P}_{n-1|n-1})}_{\text{Nonlinear state function}} d\mathbf{x}_{n-1}$$
Gaussian distribution

Measurement update



Covariance

measurement

noise

 $\hat{\mathbf{x}}_{n|n-1}$ and $\hat{\mathbf{y}}_{n|n-1}$

matrix

Recursive Cycle of the Cubature Kalman Filter

- The Kalman gain is computed as $G_n = P_{xy, n|n-1}P_{yy,n|n-1}^{-1}$ where $P_{yy,n|n-1}^{-1}$ is the inverse of the covariance matrix $P_{yy,n|n-1}^{-1}$.
- Upon receiving the new observation y_n , the filtered estimate of the state x_n is computed in accordance with the predictor-corrector formula:

$$\hat{\mathbf{x}}_{n|n} = \hat{\mathbf{x}}_{n|n-1} + \mathbf{G}_{n}(\mathbf{y}_{n-1} - \hat{\mathbf{y}}_{n|n-1})$$
Updated Old Kalman Innovations process estimate

• Correspondingly, the covariance matrix of the filtered state estimation error is computed as shown by

$$\mathbf{P}_{n|n} = \mathbf{P}_{n|n-1} - \mathbf{G}_n \mathbf{P}_{yy, n|n-1} \mathbf{G}_n^T$$

Updated posterior distribution

$$p(\mathbf{x}_n | \mathbf{Y}_n) = N(\mathbf{x}_n; \hat{\mathbf{x}}_{n|n}, \mathbf{P}_{n|n})$$

Properties of the Cubature Kalman Filter

Property 1: The cubature Kalman filter (CKF) is a derivativefree on-line sequential-state estimator.

Property 2: Approximations of the moment integrals are all *linear* in the number of adjustable parameters.

Property 3: Computational complexity of the cubature Kalman filter grows as n^3 , where *n* is the dimensionality of the state space.

Property 4: The cubature Kalman filter completely preserves second-order information about the state that is contained in the observations.

Property 5: The cubature Kalman filter *inherits properties of the linear Kalman filter*, including square-root filtering for improved accuracy and reliability.

Property 6: The cubature Kalman filter is the closest known direct approximation to the Bayesian filter, outperforming the extended Kalman filter and the central-difference Kalman filter:

It eases the curse-of-dimensionality problem but, by itself, does not overcome it.

Computer Experiment: Pattern Classification

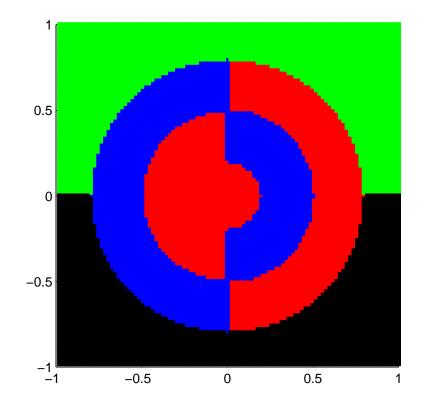


Figure 3: True classification regions

Supervised Learning

Training sample: $\{u_t, d_t\}$

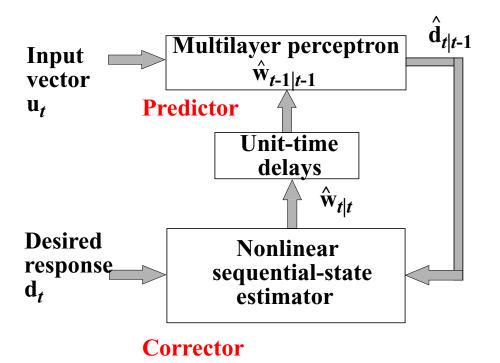


Figure 4: Block diagram of supervised learning machinery

Experimental Setup

• Used a 2-5-5-4 FFNN with softmax output nonlinearity and the mean squared-error criterion.

Total number of adjustable weights: 55 plus biases

- 1000 training examples drawn randomly from the square region.
- DSSM: Process equation: $w_t = w_{t-1} + \omega_t$ Measurement equation: $y_t = b(w_t, x_t) + v_t$
- Two training algorithms: EKF, and square-root Kalman filter (SCKF).
- To check robustness of filters, 10% of the training examples were mislabeled.

Performance Comparison

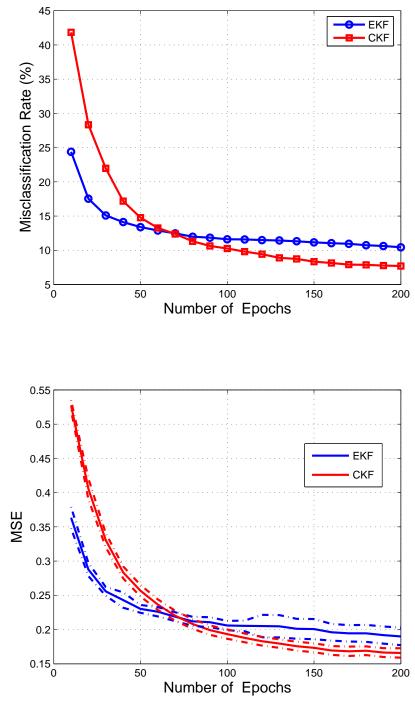


Figure 5:

9. On-going Research Projects in My Laboratory

- (i) Cubature Kalman Filter:
 - Large-scale system applications involving pattern recognition and approximate dynamic programming.

(ii) Cognitive Radio Networks:

- Spectrum sensing
- Robust transmit power control
- Dynamic spectrum management
- Emergent behaviour
- (iii) Cognitive Radar Networks:
 - Sub-optimal control of inexpensive (surveillance) radar sensors, given limited computational resources

(iv) Cocktail Party Processor:

• Computational auditory scene analysis

10. Concluding Remark

"Cognitive Dynamic Systems"

are

A Way of the Future

in

The 21st Century

Acknowledgements

- Many thanks to my gifted group of outstanding Ph.D. students
- Deep gratitude to the Natural Sciences and Engineering Research Council (NSERC) of Canada for continued financial support

The new Website

http://soma.mcmaster.ca

Cognitive Dynamic Systems Workshop, Niagara-on-the-Lake, May 2008, is available and slides can be downloaded from the following link

http://soma.mcmaster.ca/cds2008.php